Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The formation of dendrites in materials is usually seen as a failure-inducing defect in devices. Naturally, most research views dendrites as a problem needing a solution while focusing on process control techniques and post-mortem analysis of various stress patterns with the ultimate goal of total suppression of the structures. However, programmable metallization cell (PMC) technology embraces dendrite formation in chalcogenide glasses by utilizing the nascent conductive filaments as its core operative element. Furthermore, exciting More-than-Moore capabilities in the realms of device watermarking and hardware encryption schema are made possible by the random nature of dendritic branch growth. While dendritic structures …

Foss, Ryan Martin, Kozicki, Michael N, Barnaby, Hugh, et al.
Created Date

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC …

Rajabi, Saba, Barnaby, Hugh, Kozicki, Michael, et al.
Created Date

Programmable Metallization Cell (PMC) is a technology platform which utilizes mass transport in solid or liquid electrolyte coupled with electrochemical (redox) reactions to form or remove nanoscale metallic electrodeposits on or in the electrolyte. The ability to redistribute metal mass and form metallic nanostructure in or on a structure in situ, via the application of a bias on laterally placed electrodes, creates a large number of promising applications. A novel PMC-based lateral microwave switch was fabricated and characterized for use in microwave systems. It has demonstrated low insertion loss, high isolation, low voltage operation, low power and low energy consumption, …

Ren, Minghan, Kozicki, Michael, Schroder, Dieter, et al.
Created Date