Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Subject
Date Range
2012 2019


ABSTRACT As the technology length shrinks down, achieving higher gain is becoming very difficult in deep sub-micron technologies. As the supply voltages drop, cascodes are very difficult to implement and cascade amplifiers are needed to achieve sufficient gain with required output swing. This sets the fundamental limit on the SNR and hence the maximum resolution that can be achieved by ADC. With the RSD algorithm and the range overlap, the sub ADC can tolerate large comparator offsets leaving the linearity and accuracy requirement for the DAC and residue gain stage. Typically, the multiplying DAC requires high gain wide bandwidth op-amp …

Contributors
Swaminathan, Visu Vaithiyanathan, Barnaby, Hugh, Bakkaloglu, Bertan, et al.
Created Date
2012

The front end of almost all ADCs consists of a Sample and Hold Circuit in order to make sure a constant analog value is digitized at the end of ADC. The design of Track and Hold Circuit (THA) mainly focuses on following parameters: Input frequency, Sampling frequency, dynamic Range, hold pedestal, feed through error. This thesis will discuss the importance of these parameters of a THA to the ADCs and commonly used architectures of THA. A new architecture with SiGe HBT transistors in BiCMOS 130 nm technology is presented here. The proposed topology without complicated circuitry achieves high Spurious Free …

Contributors
Ramakrishna Rao, Nishita Ramakrishna, Barnaby, Hugh, Bakkaloglu, Bertan, et al.
Created Date
2012

During the last decades the development of the transistor and its continuous down-scaling allowed the appearance of cost effective wireless communication systems. New generation wideband wireless mobile systems demand high linearity, low power consumption and the low cost devices. Traditional RF systems are mainly analog-based circuitry. Contrary to digital circuits, the technology scaling results in reduction on the maximum voltage swing which makes RF design very challenging. Pushing the interface between the digital and analog boundary of the RF systems closer to the antenna becomes an attractive trend for modern RF devices. In order to take full advantages of the …

Contributors
Han, Yongping, Kiaei, Sayfe, Yu, Hongyu, et al.
Created Date
2012

The aging mechanism in devices is prone to uncertainties due to dynamic stress conditions. In AMS circuits these can lead to momentary fluctuations in circuit voltage that may be missed by a compact model and hence cause unpredictable failure. Firstly, multiple aging effects in the devices may have underlying correlations. The generation of new traps during TDDB may significantly accelerate BTI, since these traps are close to the dielectric-Si interface in scaled technology. Secondly, the prevalent reliability analysis lacks a direct validation of the lifetime of devices and circuits. The aging mechanism of BTI causes gradual degradation of the device …

Contributors
Patra, Devyani, Cao, Yu, Barnaby, Hugh, et al.
Created Date
2017

The non-quasi-static (NQS) description of device behavior is useful in fast switching and high frequency circuit applications. Hence, it is necessary to develop a fast and accurate compact NQS model for both large-signal and small-signal simulations. A new relaxation-time-approximation based NQS MOSFET model, consistent between transient and small-signal simulations, has been developed for surface-potential-based MOSFET compact models. The new model is valid for all regions of operation and is compatible with, and at low frequencies recovers, the quasi-static (QS) description of the MOSFET. The model is implemented in two widely used circuit simulators and tested for speed and convergence. It …

Contributors
Zhu, Zeqin, Gildenblat, Gennady, Bakkaloglu, Bertan, et al.
Created Date
2012

VCO as a ubiquitous circuit in many systems is highly demanding for the phase noises. Lowering the noise migrated from the power supply has been the trending topics for many years. Considering the Ring Oscillator(RO) based VCO is more sensitive to the supply noise, it is more significant to find out a useful technique to reduce the supply noise. Among the conventional supply noise reduction techniques such as filtering, channel length adjusting for the transistors, and the current noise mutual canceling, the new feature of the 28nm UTBB-FD-SOI process launched by the ST semiconductor offered a new method to reduce …

Contributors
Tang, Miao, Barnaby, Hugh, Bakkaloglu, Bertan, et al.
Created Date
2018

Scaling of the classical planar MOSFET below 20 nm gate length is facing not only technological difficulties but also limitations imposed by short channel effects, gate and junction leakage current due to quantum tunneling, high body doping induced threshold voltage variation, and carrier mobility degradation. Non-classical multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate field-effect-transistors (SGFETs) have good electrostatic integrity and are an alternative to planar MOSFETs for below 20 nm technology nodes. Circuit design with these devices need compact models for SPICE simulation. In this work physics based compact models for the common-gate symmetric DG-FinFET, independent-gate asymmetric …

Contributors
Dessai, Gajanan, Gildenblat, Gennady, Gildenblat, Gennady, et al.
Created Date
2012

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection …

Contributors
Peterson, Cory Jay, Bakkaloglu, Bertan, Barnaby, Hugh, et al.
Created Date
2013

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance …

Contributors
Diaz Aguilar, Alvaro, Tao, Nongjian, Tsui, Raymond, et al.
Created Date
2012

In thesis, a test time reduction (a low cost test) methodology for digitally-calibrated pipeline analog-to-digital converters (ADCs) is presented. A long calibration time is required in the final test to validate performance of these designs. To reduce total test time, optimized calibration technique and calibrated effective number of bits (ENOB) prediction from calibration coefficient will be presented. With the prediction technique, failed devices can be identified only without actual calibration. This technique reduces significant amount of time for the total test time. Dissertation/Thesis

Contributors
Kim, Kibeom, Ozev, Sule, Kitchen, Jennifer, et al.
Created Date
2013