ASU Electronic Theses and Dissertations

Permanent Link Feedback

Contributor
Date Range
2016 2016

In this thesis multiple approaches are explored to enhance sentiment analysis of tweets. A standard sentiment analysis model with customized features is first trained and tested to establish a baseline. This is compared to an existing topic based mixture model and a new proposed topic based vector model both of which use Latent Dirichlet Allocation (LDA) for topic modeling. The proposed topic based vector model has higher accuracies in terms of averaged F scores than the other two models. Dissertation/Thesis

Contributors
Baskaran, Swetha, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2016

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.