Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


A human communications research project at Arizona State University aurally recorded the daily interactions of aware and consenting employees and their visiting clients at the Software Factory, a software engineering consulting team, over a three year period. The resulting dataset contains valuable insights on the communication networks that the participants formed however it is far too vast to be processed manually by researchers. In this work, digital signal processing techniques are employed to develop a software toolkit that can aid in estimating the observable networks contained in the Software Factory recordings. A four-step process is employed that starts with parsing …

Contributors
Pressler, Daniel, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018

The problem of cooperative radar and communications signaling is investigated. Each system typically considers the other system a source of interference. Consequently, the tradition is to have them operate in orthogonal frequency bands. By considering the radar and communications operations to be a single joint system, performance bounds on a receiver that observes communications and radar return in the same frequency allocation are derived. Bounds in performance of the joint system is measured in terms of data information rate for communications and radar estimation information rate for the radar. Inner bounds on performance are constructed. Dissertation/Thesis

Contributors
Chiriyath, Alex Rajan, Bliss, Daniel W, Kosut, Oliver, et al.
Created Date
2014

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have …

Contributors
Dutta, Arindam, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems …

Contributors
Thontadarya, Niranjan, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2014