Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2013 2019


This dissertation is focused on developing an algorithm to provide current state estimation and future state predictions for biomechanical human walking features. The goal is to develop a system which is capable of evaluating the current action a subject is taking while walking and then use this to predict the future states of biomechanical features. This work focuses on the exploration and analysis of Interaction Primitives (Amor er al, 2014) and their relevance to biomechanical prediction for human walking. Built on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize an EKF SLAM algorithm to localize and map a distribution …

Contributors
Clark, Geoffrey Mitchell, Ben Amor, Heni, Si, Jennie, et al.
Created Date
2018

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered. In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to estimate the location of the nodes. Specifically, the location estimation in the presence of fading channels using time of arrival (TOA) measurements with narrowband communication signals is considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under different …

Contributors
Zhang, Xue, Tepedelenlioglu, Cihan, Spanias, Andreas, et al.
Created Date
2016

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting …

Contributors
Zhou, Meng, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts - The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed …

Contributors
Wai, Hoi To, Scaglione, Anna, Berisha, Visar, et al.
Created Date
2017

With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes. This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of …

Contributors
Lubold, Nichola Anne, Walker, Erin, Pon-Barry, Heather, et al.
Created Date
2018

As the demand for spectrum sharing between radar and communications systems is steadily increasing, the coexistence between the two systems is a growing and very challenging problem. Radar tracking in the presence of strong communications interference can result in low probability of detection even when sequential Monte Carlo tracking methods such as the particle filter (PF) are used that better match the target kinematic model. In particular, the tracking performance can fluctuate as the power level of the communications interference can vary dynamically and unpredictably. This work proposes to integrate the interacting multiple model (IMM) selection approach with the PF …

Contributors
ZHOU, JIAN, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2015

RF convergence of radar and communications users is rapidly becoming an issue for a multitude of stakeholders. To hedge against growing spectral congestion, research into cooperative radar and communications systems has been identified as a critical necessity for the United States and other countries. Further, the joint sensing-communicating paradigm appears imminent in several technological domains. In the pursuit of co-designing radar and communications systems that work cooperatively and benefit from each other's existence, joint radar-communications metrics are defined and bounded as a measure of performance. Estimation rate is introduced, a novel measure of radar estimation information as a function of …

Contributors
Paul, Bryan, Bliss, Daniel W., Berisha, Visar, et al.
Created Date
2017

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have …

Contributors
Dutta, Arindam, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems …

Contributors
Thontadarya, Niranjan, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2014

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects …

Contributors
Barragan, Beatriz, Liss, Julie, Berisha, Visar, et al.
Created Date
2018