Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2013 2019


Much evidence has shown that first language (L1) plays an important role in the formation of L2 phonological system during second language (L2) learning process. This combines with the fact that different L1s have distinct phonological patterns to indicate the diverse L2 speech learning outcomes for speakers from different L1 backgrounds. This dissertation hypothesizes that phonological distances between accented speech and speakers' L1 speech are also correlated with perceived accentedness, and the correlations are negative for some phonological properties. Moreover, contrastive phonological distinctions between L1s and L2 will manifest themselves in the accented speech produced by speaker from these L1s. …

Contributors
Tu, Ming, Berisha, Visar, Liss, Julie M, et al.
Created Date
2018

Speech intelligibility measures how much a speaker can be understood by a listener. Traditional measures of intelligibility, such as word accuracy, are not sufficient to reveal the reasons of intelligibility degradation. This dissertation investigates the underlying sources of intelligibility degradations from both perspectives of the speaker and the listener. Segmental phoneme errors and suprasegmental lexical boundary errors are developed to reveal the perceptual strategies of the listener. A comprehensive set of automated acoustic measures are developed to quantify variations in the acoustic signal from three perceptual aspects, including articulation, prosody, and vocal quality. The developed measures have been validated on …

Contributors
Jiao, Yishan, Berisha, Visar, Liss, Julie, et al.
Created Date
2019

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained. The contributions of this dissertation …

Contributors
Kanberoglu, Berkay, Frakes, David, Turaga, Pavan, et al.
Created Date
2018

The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been …

Contributors
Kalyanasundaram, Girish, Spanias, Andreas S, Tepedelenlioglu, Cihan, et al.
Created Date
2013

Audio signals, such as speech and ambient sounds convey rich information pertaining to a user’s activity, mood or intent. Enabling machines to understand this contextual information is necessary to bridge the gap in human-machine interaction. This is challenging due to its subjective nature, hence, requiring sophisticated techniques. This dissertation presents a set of computational methods, that generalize well across different conditions, for speech-based applications involving emotion recognition and keyword detection, and ambient sounds-based applications such as lifelogging. The expression and perception of emotions varies across speakers and cultures, thus, determining features and classification methods that generalize well to different conditions …

Contributors
Shah, Mohit, Spanias, Andreas, Chakrabarti, Chaitali, et al.
Created Date
2015

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and …

Contributors
Simhadri, Sravanthi, Zhou, Yi, Turaga, Pavan, et al.
Created Date
2014

Compressed sensing (CS) is a novel approach to collecting and analyzing data of all types. By exploiting prior knowledge of the compressibility of many naturally-occurring signals, specially designed sensors can dramatically undersample the data of interest and still achieve high performance. However, the generated data are pseudorandomly mixed and must be processed before use. In this work, a model of a single-pixel compressive video camera is used to explore the problems of performing inference based on these undersampled measurements. Three broad types of inference from CS measurements are considered: recovery of video frames, target tracking, and object classification/detection. Potential applications …

Contributors
Braun, Henry Carlton, Turaga, Pavan K, Spanias, Andreas S, et al.
Created Date
2016

A human communications research project at Arizona State University aurally recorded the daily interactions of aware and consenting employees and their visiting clients at the Software Factory, a software engineering consulting team, over a three year period. The resulting dataset contains valuable insights on the communication networks that the participants formed however it is far too vast to be processed manually by researchers. In this work, digital signal processing techniques are employed to develop a software toolkit that can aid in estimating the observable networks contained in the Software Factory recordings. A four-step process is employed that starts with parsing …

Contributors
Pressler, Daniel, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018

The problem of cooperative radar and communications signaling is investigated. Each system typically considers the other system a source of interference. Consequently, the tradition is to have them operate in orthogonal frequency bands. By considering the radar and communications operations to be a single joint system, performance bounds on a receiver that observes communications and radar return in the same frequency allocation are derived. Bounds in performance of the joint system is measured in terms of data information rate for communications and radar estimation information rate for the radar. Inner bounds on performance are constructed. Dissertation/Thesis

Contributors
Chiriyath, Alex Rajan, Bliss, Daniel W, Kosut, Oliver, et al.
Created Date
2014

This dissertation is focused on developing an algorithm to provide current state estimation and future state predictions for biomechanical human walking features. The goal is to develop a system which is capable of evaluating the current action a subject is taking while walking and then use this to predict the future states of biomechanical features. This work focuses on the exploration and analysis of Interaction Primitives (Amor er al, 2014) and their relevance to biomechanical prediction for human walking. Built on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize an EKF SLAM algorithm to localize and map a distribution …

Contributors
Clark, Geoffrey Mitchell, Ben Amor, Heni, Si, Jennie, et al.
Created Date
2018