Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The purpose of this study was to identify acoustic markers that correlate with accurate and inaccurate /r/ production in children ages 5-8 using signal processing. In addition, the researcher aimed to identify predictive acoustic markers that relate to changes in /r/ accuracy. A total of 35 children (23 accurate, 12 inaccurate, 8 longitudinal) were recorded. Computerized stimuli were presented on a PC laptop computer and the children were asked to do five tasks to elicit spontaneous and imitated /r/ production in all positions. Files were edited and analyzed using a filter bank approach centered at 40 frequencies based on the …

Contributors
Becvar, Brittany Patricia, Azuma, Tamiko, Weinhold, Juliet, et al.
Created Date
2017

This work considers the problem of multiple detection and tracking in two complex time-varying environments, urban terrain and underwater. Tracking multiple radar targets in urban environments is rst investigated by exploiting multipath signal returns, wideband underwater acoustic (UWA) communications channels are estimated using adaptive learning methods, and multiple UWA communications users are detected by designing the transmit signal to match the environment. For the urban environment, a multi-target tracking algorithm is proposed that integrates multipath-to-measurement association and the probability hypothesis density method implemented using particle filtering. The algorithm is designed to track an unknown time-varying number of targets by extracting …

Contributors
Zhou, Meng, Papandreou-Suppappola, Antonia, Tepedelenlioglu, Cihan, et al.
Created Date
2014

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have …

Contributors
Dutta, Arindam, Bliss, Daniel W, Berisha, Visar, et al.
Created Date
2018