Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the …

Contributors
Mao, Hongwei, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to …

Contributors
Yuan, Yuan, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information. A new algorithm is proposed in this dissertation to this very issue. Optimization and parameter tuning of a robust camera motion estimation as well as implementation details are discussed for a real-time application using an ordinary general-purpose computer. Performance evaluations on real-world unmanned air vehicle (UAV) videos demonstrate the robustness …

Contributors
Yang, Chenhui, Si, Jennie, Jassemidis, Leonidas, et al.
Created Date
2012

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following …

Contributors
Anand, Sindhu, Muthuswamy, Jitendran, Tillery, Stephen H, et al.
Created Date
2013