Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design …

Contributors
Xu, Zihan, Cao, Yu, Chakrabarti, Chaitali, et al.
Created Date
2017

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep …

Contributors
Mohanty, Abinash, Cao, Yu, Seo, Jae-sun, et al.
Created Date
2018

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate …

Contributors
Gummalla, Samatha, Chakrabarti, Chaitali, Cao, Yu, et al.
Created Date
2011

Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance, they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the memory and computation cost of keyword detection and speech recognition networks (or DNNs) are presented. The first technique is based on representing all weights and biases by a small number of bits and mapping all nodal computations into fixed-point ones with minimal degradation in the accuracy. Experiments conducted on the …

Contributors
Arunachalam, Sairam, Chakrabarti, Chaitali, Seo, Jae-sun, et al.
Created Date
2016

Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are difficult to be handled by conventional power-law model (tn). Such discrepancies further pose the challenge on long-term reliability prediction under statistical variations and Dynamic Voltage Scaling (DVS) in real circuit operation. To overcome these barriers, the modeling effort in this work (1) practically explains the aging statistics due to randomness in number of traps with log(t) model, accurately predicting the mean and variance shift; (2) proposes cycle-to-cycle model (from the …

Contributors
Velamala, Jyothi Bhaskarr Amarnadh, Cao, Yu, Clark, Lawrence, et al.
Created Date
2012

Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional CMOS. In recent years, many efforts have been devoted in the research of next-generation emerging non-volatile memory (eNVM) technologies, such as resistive random access memory (RRAM) and phase change memory (PCM), to replace conventional digital memories (e.g. SRAM) for implementation of synapses in large-scale neuromorphic computing systems. Essentially being compact …

Contributors
Chen, Pai-Yu, Yu, Shimeng, Cao, Yu, et al.
Created Date
2018

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due …

Contributors
Subramaniam, Anupama R., Cao, Yu, Chakrabarti, Chaitali, et al.
Created Date
2012

Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs …

Contributors
Emre, Yunus, Chakrabarti, Chaitali, Bakkaloglu, Bertan, et al.
Created Date
2012

Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel- ligence. The innovations in ANN has led to ground breaking technological advances like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and many more. These were inspired by evolution and working of our brains. Similar to how our brain evolved using a combination of epigenetics and live stimulus,ANN require training to learn patterns.The training usually requires a lot of computation and memory accesses. To realize these systems in real embedded hardware many Energy/Power/Performance issues needs to be solved. The purpose of this research is to focus on methods to study …

Contributors
Chowdary, Hidayatullah, Cao, Yu, Seo, JaeSun, et al.
Created Date
2018

Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for implementing high-throughput DSP systems that are also energy-efficient. Data-path components such as adders and multipliers are evaluated with respect to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR adder with very good EDP performance has been proposed. The corresponding RBR parallel adder has a …

Contributors
Mahadevan, Rupa, Chakrabarti, Chaitali, Kiaei, Sayfe, et al.
Created Date
2011