Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that factors into linear factors over $K$, as do all of its derivatives. Such a polynomial is said to be {\it proper} if its roots are distinct. An unresolved question in the literature is whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples are known of proper $K$-derived quartics for a quadratic number field $K$, although other than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field is $\Q(\sqrt{3441})$.) ...

Contributors
Carrillo, Benjamin, Jones, John, Bremner, Andrew, et al.
Created Date
2019