Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2012 2018


Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale more sensitive to numerous biological processes. The application of Micro-Electro-Mechanical Systems (MEMS) in biomedical settings has recently emerged and flourished over course of the last two decades, requiring a deep understanding of material biocompatibility, biosensing sensitively/selectively, biological constraints for artificial tissue/organ replacement, and the regulations in place to ensure device safety. Capitalizing on the inherent physical differences between cancerous and …

Contributors
Podlevsky, Jennie Hewitt Appel, Chae, Junseok, Goryll, Michael, et al.
Created Date
2018

To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural patterns while he improved his task performance accuracy from chance to 80% or higher. Specifically, simultaneous multi-channel single unit neural recordings from the rat's agranular medial (AGm) and Agranular lateral (AGl) cortices were analyzed using joint peristimulus time histogram (JPSTHs), which effectively unveils firing coincidences in neural action potentials. My …

Contributors
Cheng, Bing, Si, Jennie, Chae, Junseok, et al.
Created Date
2014

The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely …

Contributors
Schwerdt, Helen N., Chae, Junseok, Miranda, Félix A, et al.
Created Date
2014

A Microbial fuel cell (MFC) is a bio-inspired carbon-neutral, renewable electrochemical converter to extract electricity from catabolic reaction of micro-organisms. It is a promising technology capable of directly converting the abundant biomass on the planet into electricity and potentially alleviate the emerging global warming and energy crisis. The current and power density of MFCs are low compared with conventional energy conversion techniques. Since its debut in 2002, many studies have been performed by adopting a variety of new configurations and structures to improve the power density. The reported maximum areal and volumetric power densities range from 19 mW/m2 to 1.57 …

Contributors
Ren, Hao, Chae, Junseok, Bakkaloglu, Bertan, et al.
Created Date
2016

This work demonstrates the integration of a wearable particulate detector and a wireless chemical sensor into a single portable system. The detection philosophy of the chemical sensor is based on highly selective and sensitive microfabricated quartz tuning fork arrays and the particle detector detects the particulate level in real-time using a nephelometric (light scattering) approach. The device integration is realized by carefully evaluating the needs of flow rate, power and data collection. Validation test has been carried out in both laboratory and in field trials such as parking structures and highway exits with high and low traffic emissions. The integrated …

Contributors
Gao, Tianle, Tao, Nongjian, Chae, Junseok, et al.
Created Date
2012

Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described. First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for …

Contributors
Zhang, Fenni, Tao, Nongjian, Chae, Junseok, et al.
Created Date
2018

This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry that acts as a traveling wave tapped-delay line. The input RF signal is applied by an array of capacitive transducers at various locations on the acoustic waveguide at one end that excites waves of a propagating acoustic mode with varying spatial delays and amplitudes which interfere as they propagate. The …

Contributors
Galinde, Ameya, Abbaspour-Tamijani, Abbas, Chae, Junseok, et al.
Created Date
2013

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to …

Contributors
Yuan, Yuan, Si, Jennie, Buneo, Christopher, et al.
Created Date
2014

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput. This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that …

Contributors
Wang, Yan, Tao, Nongjian, Chae, Junseok, et al.
Created Date
2018

Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces up to approximately 10µW with an output voltage of 0.4-0.7V. Such a low voltage, which is also load dependent, prevents the MFC to directly drive low power electronics. A PFM (Pulse Frequency Modulation) type DC-DC converter in DCM (Discontinuous Conduction Mode) is developed to address the challenges and provides a …

Contributors
Zhang, Xu, Chae, Junseok, Kiaei, Sayfe, et al.
Created Date
2012