Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two separate structures of the sea clutter intensity fluctuations. The first structure is the texture that is associated with long sea waves and exhibits long temporal decorrelation period. The second structure is the speckle that accounts for reflections from multiple scatters and exhibits a short temporal decorrelation period from pulse to pulse. …

Contributors
Northrop, Judith, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2019

Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess …

Contributors
Deb, Ranadeep, Ogras, Umit Y, Shill, Holly, et al.
Created Date
2019

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep …

Contributors
Mohanty, Abinash, Cao, Yu, Seo, Jae-sun, et al.
Created Date
2018

With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to …

Contributors
Animesh, Saurabh, Chakrabarti, Chaitali, Brunhaver, John, et al.
Created Date
2018

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network. In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time …

Contributors
XIONG, YAN, Chakrabarti, Chaitali, Berisha, Visar, et al.
Created Date
2018

Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented. First, a velocity estimator based on speckle tracking and …

Contributors
WEI, SIYUAN, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel- ligence. The innovations in ANN has led to ground breaking technological advances like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and many more. These were inspired by evolution and working of our brains. Similar to how our brain evolved using a combination of epigenetics and live stimulus,ANN require training to learn patterns.The training usually requires a lot of computation and memory accesses. To realize these systems in real embedded hardware many Energy/Power/Performance issues needs to be solved. The purpose of this research is to focus on methods to study …

Contributors
Chowdary, Hidayatullah, Cao, Yu, Seo, JaeSun, et al.
Created Date
2018

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement. To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model. This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. …

Contributors
Srivastava, Gaurav, Seo, Jae-Sun, Chakrabarti, Chaitali, et al.
Created Date
2018

Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Chakrabarti, Chaitali, et al.
Created Date
2018