Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Nearly 60% of the world population uses a mobile phone, which is typically powered by a system-on-chip (SoC). While the mobile platform capabilities range widely, responsiveness, long battery life and reliability are common design concerns that are crucial to remain competitive. Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful SoC with numerous other resources, including display, memory, power management IC, battery and wireless modems. Furthermore, the SoC itself is a heterogeneous resource that integrates many processing elements, such as CPU cores, GPU, video, image, and audio processors. Therefore, CPU cores do not dominate the platform power …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Chakrabarti, Chaitali, et al.
Created Date
2018

To extend the lifetime of complementary metal-oxide-semiconductors (CMOS), emerging process techniques are being proposed to conquer the manufacturing difficulties. New structures and materials are proposed with superior electrical properties to traditional CMOS, such as strain technology and feedback field-effect transistor (FB-FET). To continue the design success and make an impact on leading products, advanced circuit design exploration must begin concurrently with early silicon development. Therefore, an accurate and scalable model is desired to correctly capture those effects and flexible to extend to alternative process choices. For example, strain technology has been successfully integrated into CMOS fabrication to improve transistor performance …

Contributors
Wang, Chi-Chao, Cao, Yu, Chakrabarti, Chaitali, et al.
Created Date
2011

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and …

Contributors
An, Pei, Cao, Yu, Barnaby, Hugh, et al.
Created Date
2013

The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through physical root of trust, such as, through use of physical unclonable functions (PUF). PUF leverages the inherent randomness in physical systems to provide device specific authentication and encryption. In this thesis, first the design of a highly reliable resistive random access memory (RRAM) PUF is presented. Compared to existing 1 cell/bit RRAM, here the sum of the read-out currents of multiple RRAM cells are used for generating one response bit. …

Contributors
Shrivastava, Ayush, Chakrabarti, Chaitali, Yu, Shimeng, et al.
Created Date
2015

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might …

Contributors
Michael, Stefanos, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

Thousands of high-resolution images are generated each day. Detecting and analyzing variations in these images are key steps in image understanding. This work focuses on spatial and multitemporal visual change detection and its applications in multi-temporal synthetic aperture radar (SAR) images. The Canny edge detector is one of the most widely-used edge detection algorithms due to its superior performance in terms of SNR and edge localization and only one response to a single edge. In this work, we propose a mechanism to implement the Canny algorithm at the block level without any loss in edge detection performance as compared to …

Contributors
Xu, Qian, Karam, Lina J, Chakrabarti, Chaitali, et al.
Created Date
2014

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements. This work presents StreamWorks, …

Contributors
Panda, Amrit Kumar, Chatha, Karam S., Wu, Carole-Jean, et al.
Created Date
2014

Energy consumption of the data centers worldwide is rapidly growing fueled by ever-increasing demand for Cloud computing applications ranging from social networking to e-commerce. Understandably, ensuring energy-efficiency and sustainability of Cloud data centers without compromising performance is important for both economic and environmental reasons. This dissertation develops a cyber-physical multi-tier server and workload management architecture which operates at the local and the global (geo-distributed) data center level. We devise optimization frameworks for each tier to optimize energy consumption, energy cost and carbon footprint of the data centers. The proposed solutions are aware of various energy management tradeoffs that manifest due …

Contributors
Abbasi, Zahra, Gupta, Sandeep K. S., Chakrabarti, Chaitali, et al.
Created Date
2014

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering approaches have been considered to solve this problem. Such methods, however, can be computationally intensive for real time radar processing. This work proposes a new approach that is based on the unsupervised clustering of target and clutter detections before target tracking using particle filtering. In particular, Gaussian mixture modeling is first used …

Contributors
Freeman, Matthew Gregory, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2016