Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Date Range
2010 2019


There is a growing interest in the creation of three-dimensional (3D) images and videos due to the growing demand for 3D visual media in commercial markets. A possible solution to produce 3D media files is to convert existing 2D images and videos to 3D. The 2D to 3D conversion methods that estimate the depth map from 2D scenes for 3D reconstruction present an efficient approach to save on the cost of the coding, transmission and storage of 3D visual media in practical applications. Various 2D to 3D conversion methods based on depth maps have been developed using existing image and …

Contributors
Li, Jinjin, Karam, Lina J, Chakrabarti, Chaitali, et al.
Created Date
2010

In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted …

Contributors
Piwowarski, Ryan, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2011

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate …

Contributors
Gummalla, Samatha, Chakrabarti, Chaitali, Cao, Yu, et al.
Created Date
2011

Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for implementing high-throughput DSP systems that are also energy-efficient. Data-path components such as adders and multipliers are evaluated with respect to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR adder with very good EDP performance has been proposed. The corresponding RBR parallel adder has a …

Contributors
Mahadevan, Rupa, Chakrabarti, Chaitali, Kiaei, Sayfe, et al.
Created Date
2011

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might …

Contributors
Michael, Stefanos, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and …

Contributors
An, Pei, Cao, Yu, Barnaby, Hugh, et al.
Created Date
2013

In this work, we present approximate adders and multipliers to reduce data-path complexity of specialized hardware for various image processing systems. These approximate circuits have a lower area, latency and power consumption compared to their accurate counterparts and produce fairly accurate results. We build upon the work on approximate adders and multipliers presented in [23] and [24]. First, we show how choice of algorithm and parallel adder design can be used to implement 2D Discrete Cosine Transform (DCT) algorithm with good performance but low area. Our implementation of the 2D DCT has comparable PSNR performance with respect to the algorithm …

Contributors
Vasudevan, Madhu, Chakrabarti, Chaitali, Frakes, David, et al.
Created Date
2013

Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking environment with a time varying allocation of processing elements for a particular streaming application. As a solution the thesis proposes a two step approach where the stream program is compiled to gather key application information, and to …

Contributors
Lee, Haeseung, Chatha, Karamvir, Vrudhula, Sarma, et al.
Created Date
2013

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature …

Contributors
Desai, Digant, Vrudhula, Sarma, Chakrabarti, Chaitali, et al.
Created Date
2013

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires …

Contributors
Wei, Siyuan, Chakrabarti, Chaitali, Frakes, David, et al.
Created Date
2013

In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions …

Contributors
Yellamraju, Anirudh, Chakrabarti, Chaitali, Turaga, Pavan, et al.
Created Date
2014

Neural activity tracking using electroencephalography (EEG) and magnetoencephalography (MEG) brain scanning methods has been widely used in the field of neuroscience to provide insight into the nervous system. However, the tracking accuracy depends on the presence of artifacts in the EEG/MEG recordings. Artifacts include any signals that do not originate from neural activity, including physiological artifacts such as eye movement and non-physiological activity caused by the environment. This work proposes an integrated method for simultaneously tracking multiple neural sources using the probability hypothesis density particle filter (PPHDF) and reducing the effect of artifacts using feature extraction and stochastic modeling. Unique …

Contributors
Jiang, Jiewei, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2014

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity. Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for …

Contributors
Gupta, Ujjwal, Ogras, Umit Y., Ozev, Sule, et al.
Created Date
2014

This thesis report aims at introducing the background of QR decomposition and its application. QR decomposition using Givens rotations is a efficient method to prevent directly matrix inverse in solving least square minimization problem, which is a typical approach for weight calculation in adaptive beamforming. Furthermore, this thesis introduces Givens rotations algorithm and two general VLSI (very large scale integrated circuit) architectures namely triangular systolic array and linear systolic array for numerically QR decomposition. To fulfill the goal, a 4 input channels triangular systolic array with 16 bits fixed-point format and a 5 input channels linear systolic array are implemented …

Contributors
Yu, Hanguang, Bliss, Daniel W, Ying, Lei, et al.
Created Date
2014

Object tracking is an important topic in multimedia, particularly in applications such as teleconferencing, surveillance and human-computer interface. Its goal is to determine the position of objects in images continuously and reliably. The key steps involved in object tracking are foreground detection to detect moving objects, clustering to enable representation of an object by its centroid, and tracking the centroids to determine the motion parameters. In this thesis, a low cost object tracking system is implemented on a hardware accelerator that is a warp based processor for SIMD/Vector style computations. First, the different foreground detection techniques are explored to figure …

Contributors
Sasikumar, Asha, Chakrabarti, Chaitali, Ogras, Umit, et al.
Created Date
2015

Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed. In particular, I propose a new family of scheduling policies for heterogeneous microservers that assign incoming search queries to available cores so as to optimize for performance metrics such as mean response time and service level agreements, while guaranteeing thermally-safe operation. Thorough experimental evaluations on a big-LITTLE platform demonstrate, on an heterogeneous eight-core Samsung Exynos 5422 MpSoC, with four big …

Contributors
Jain, Sankalp, Ogras, Umit Y., Garg, Siddharth, et al.
Created Date
2015

The recent flurry of security breaches have raised serious concerns about the security of data communication and storage. A promising way to enhance the security of the system is through physical root of trust, such as, through use of physical unclonable functions (PUF). PUF leverages the inherent randomness in physical systems to provide device specific authentication and encryption. In this thesis, first the design of a highly reliable resistive random access memory (RRAM) PUF is presented. Compared to existing 1 cell/bit RRAM, here the sum of the read-out currents of multiple RRAM cells are used for generating one response bit. …

Contributors
Shrivastava, Ayush, Chakrabarti, Chaitali, Yu, Shimeng, et al.
Created Date
2015

Speech recognition and keyword detection are becoming increasingly popular applications for mobile systems. While deep neural network (DNN) implementation of these systems have very good performance, they have large memory and compute resource requirements, making their implementation on a mobile device quite challenging. In this thesis, techniques to reduce the memory and computation cost of keyword detection and speech recognition networks (or DNNs) are presented. The first technique is based on representing all weights and biases by a small number of bits and mapping all nodal computations into fixed-point ones with minimal degradation in the accuracy. Experiments conducted on the …

Contributors
Arunachalam, Sairam, Chakrabarti, Chaitali, Seo, Jae-sun, et al.
Created Date
2016

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering approaches have been considered to solve this problem. Such methods, however, can be computationally intensive for real time radar processing. This work proposes a new approach that is based on the unsupervised clustering of target and clutter detections before target tracking using particle filtering. In particular, Gaussian mixture modeling is first used …

Contributors
Freeman, Matthew Gregory, Papandreou-Suppappola, Antonia, Bliss, Daniel, et al.
Created Date
2016

Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of selecting from a set of complete radios as in software controlled radio, what if the software could select the building blocks based on the user needs. This is the new software-defined flexible radio which would enable users to construct wireless systems that fit their needs, rather than forcing to use …

Contributors
Chagari, Vamsi Reddy, Chakrabarti, Chaitali, Lee, Hyunseok, et al.
Created Date
2016

Many real-time vision applications require accurate estimation of optical flow. This problem is quite challenging due to extremely high computation and memory requirements. This thesis focuses on designing low complexity dense optical flow algorithms. First, a new method for optical flow that is based on Semi-Global Matching (SGM), a popular dynamic programming algorithm for stereo vision, is presented. In SGM, the disparity of each pixel is calculated by aggregating local matching costs over the entire image to resolve local ambiguity in texture-less and occluded regions. The proposed method, Neighbor-Guided Semi-Global Matching (NG-fSGM) achieves significantly less complexity compared to SGM, by …

Contributors
Xiang, Jiang, Chakrabarti, Chaitali, Karam, Lina, et al.
Created Date
2017

This thesis addresses two problems in digital baseband design of wireless communication systems, namely, those in Internet of Things (IoT) terminals that support long range communications and those in full-duplex systems that are designed for high spectral efficiency. IoT terminals for long range communications are typically based on Orthogonal Frequency-Division Multiple Access (OFDMA) and spread spectrum technologies. In order to design an efficient baseband architecture for such terminals, the workload profiles of both systems are analyzed. Since frame detection unit has by far the highest computational load, a simple architecture that uses only a scalar datapath is proposed. To optimize …

Contributors
Wu, Shunyao, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2017

When one considers the current state of wireless communications, it becomes clear that it is both absolutely amazing and something of a mess. Present communications standards are the result of local optimizations over time that led to a confusing set of suboptimal and fragile wireless standards. Starting from a clean sheet of paper, Bliss Laboratory for Information, Signals, and Systems (BLISS) is considering a fluid set of communications standards co-optimized with flexible but power-efficient computational implementations that will enable the next revolution of wireless communications. The main aim is to enable much higher data rates and much lower data rates …

Contributors
Rupakula, Venkata Sai Karteek, Bliss, Daniel W, Chakrabarti, Chaitali, et al.
Created Date
2017

The goal is to provide accurate measurement of the channel between a ground source and a receiving satellite. The effects of the the ionosphere for ground to space propagation for radio waves in the 3-30 MHz HF band is an unstudied subject. The effects of the ionosphere on radio propagation is a long studied subject, the primary focus has been ground to ground by means of ionospheric reflection and space to ground corrections of ionospheric distortions of GPS. Because of the plasma properties of the ionosphere there is a strong dependence on the frequency of use. GPS L1 1575.42 MHz …

Contributors
Standage-Beier, Wylie S, Bliss, Daniel W, Chakrabarti, Chaitali, et al.
Created Date
2017

This thesis work present the simulation of Bluetooth and Wi-Fi radios in real life interference environments. When information is transmitted via communication channels, data may get corrupted due to noise and other channel discrepancies. In order to receive the information safely and correctly, error correction coding schemes are generally employed during the design of communication systems. Usually the simulations of wireless communication systems are done in such a way that they focus on some aspect of communications and neglect the others. The simulators available currently will either do network layer simulations or physical layer level simulations. In many situations, simulations …

Contributors
Nolastname, Ujjwala, Bliss, Daniel W., Chakrabarti, Chaitali, et al.
Created Date
2017

With the new age Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this thesis, a wireless system is proposed which is targeted towards very low power, delay insensitive IoT applications with low throughput requirements. The low cost receivers for such devices will have very low complexity, consume very less power and hence will run for several years. Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of …

Contributors
Sharma, Prashant, Bliss, Daniel, Chakrabarti, Chaitali, et al.
Created Date
2017

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement. To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model. This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. …

Contributors
Srivastava, Gaurav, Seo, Jae-Sun, Chakrabarti, Chaitali, et al.
Created Date
2018

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network. In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time …

Contributors
XIONG, YAN, Chakrabarti, Chaitali, Berisha, Visar, et al.
Created Date
2018

Articial Neural Network(ANN) has become a for-bearer in the field of Articial Intel- ligence. The innovations in ANN has led to ground breaking technological advances like self-driving vehicles,medical diagnosis,speech Processing,personal assistants and many more. These were inspired by evolution and working of our brains. Similar to how our brain evolved using a combination of epigenetics and live stimulus,ANN require training to learn patterns.The training usually requires a lot of computation and memory accesses. To realize these systems in real embedded hardware many Energy/Power/Performance issues needs to be solved. The purpose of this research is to focus on methods to study …

Contributors
Chowdary, Hidayatullah, Cao, Yu, Seo, JaeSun, et al.
Created Date
2018

With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to …

Contributors
Animesh, Saurabh, Chakrabarti, Chaitali, Brunhaver, John, et al.
Created Date
2018

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks. The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs …

Contributors
Kodukula, Venkatesh, LiKamWa, Robert, Chakrabarti, Chaitali, et al.
Created Date
2019

Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess …

Contributors
Deb, Ranadeep, Ogras, Umit Y, Shill, Holly, et al.
Created Date
2019

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and …

Contributors
Gubash, Gerard Robert, Bliss, Daniel W, Richmond, Christ, et al.
Created Date
2019