Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2019


In this thesis, an adaptive waveform selection technique for dynamic target tracking under low signal-to-noise ratio (SNR) conditions is investigated. The approach is integrated with a track-before-detect (TBD) algorithm and uses delay-Doppler matched filter (MF) outputs as raw measurements without setting any threshold for extracting delay-Doppler estimates. The particle filter (PF) Bayesian sequential estimation approach is used with the TBD algorithm (PF-TBD) to estimate the dynamic target state. A waveform-agile TBD technique is proposed that integrates the PF-TBD with a waveform selection technique. The new approach predicts the waveform to transmit at the next time step by minimizing the predicted …

Contributors
Piwowarski, Ryan, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2011

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An …

Contributors
Edla, Shwetha Reddy, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due …

Contributors
Subramaniam, Anupama R., Cao, Yu, Chakrabarti, Chaitali, et al.
Created Date
2012

Negative bias temperature instability (NBTI) is a leading aging mechanism in modern digital and analog circuits. Recent NBTI data exhibits an excessive amount of randomness and fast recovery, which are difficult to be handled by conventional power-law model (tn). Such discrepancies further pose the challenge on long-term reliability prediction under statistical variations and Dynamic Voltage Scaling (DVS) in real circuit operation. To overcome these barriers, the modeling effort in this work (1) practically explains the aging statistics due to randomness in number of traps with log(t) model, accurately predicting the mean and variance shift; (2) proposes cycle-to-cycle model (from the …

Contributors
Velamala, Jyothi Bhaskarr Amarnadh, Cao, Yu, Clark, Lawrence, et al.
Created Date
2012

Today's mobile devices have to support computation-intensive multimedia applications with a limited energy budget. In this dissertation, we present architecture level and algorithm-level techniques that reduce energy consumption of these devices with minimal impact on system quality. First, we present novel techniques to mitigate the effects of SRAM memory failures in JPEG2000 implementations operating in scaled voltages. We investigate error control coding schemes and propose an unequal error protection scheme tailored for JPEG2000 that reduces overhead without affecting the performance. Furthermore, we propose algorithm-specific techniques for error compensation that exploit the fact that in JPEG2000 the discrete wavelet transform outputs …

Contributors
Emre, Yunus, Chakrabarti, Chaitali, Bakkaloglu, Bertan, et al.
Created Date
2012

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might …

Contributors
Michael, Stefanos, Papandreou-Suppappola, Antonia, Chakrabarti, Chaitali, et al.
Created Date
2012

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns. However, architectures based on RC decomposition are not efficient for large input size data which have to be stored in external memories based Synchronous Dynamic RAM (SDRAM). In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized input data is proposed. This architecture achieves very high throughput …

Contributors
Yu, Chi-Li, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2012

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and …

Contributors
An, Pei, Cao, Yu, Barnaby, Hugh, et al.
Created Date
2013

In this work, we present approximate adders and multipliers to reduce data-path complexity of specialized hardware for various image processing systems. These approximate circuits have a lower area, latency and power consumption compared to their accurate counterparts and produce fairly accurate results. We build upon the work on approximate adders and multipliers presented in [23] and [24]. First, we show how choice of algorithm and parallel adder design can be used to implement 2D Discrete Cosine Transform (DCT) algorithm with good performance but low area. Our implementation of the 2D DCT has comparable PSNR performance with respect to the algorithm …

Contributors
Vasudevan, Madhu, Chakrabarti, Chaitali, Frakes, David, et al.
Created Date
2013

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013