Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This thesis report aims at introducing the background of QR decomposition and its application. QR decomposition using Givens rotations is a efficient method to prevent directly matrix inverse in solving least square minimization problem, which is a typical approach for weight calculation in adaptive beamforming. Furthermore, this thesis introduces Givens rotations algorithm and two general VLSI (very large scale integrated circuit) architectures namely triangular systolic array and linear systolic array for numerically QR decomposition. To fulfill the goal, a 4 input channels triangular systolic array with 16 bits fixed-point format and a 5 input channels linear systolic array are implemented …

Contributors
Yu, Hanguang, Bliss, Daniel W, Ying, Lei, et al.
Created Date
2014

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns. However, architectures based on RC decomposition are not efficient for large input size data which have to be stored in external memories based Synchronous Dynamic RAM (SDRAM). In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized input data is proposed. This architecture achieves very high throughput …

Contributors
Yu, Chi-Li, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2012