Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




A series of Molybdenum-Copper bilayers were studied for use in 120mK superconducting transition edge sensors for spectrometer applications. The Transition temperature (T<sub>C</sub>) was tuned to the desired temperature using the proximity effect, by adjusting the thickness of a normal copper layer in direct contact with the superconducting molybdenum layer in a proximitized bilayer structure. The bilayers have a fixed normal metal thickness d<sub>Cu</sub>=1250 &Aring;, on top of a variable superconductor thickness 650 &Aring; &le; d<sub>Mo</sub> &le; 1000 &Aring;. Material characterization techniques including X-ray Diffraction (XRD), Rutherford Backscattering Spectroscopy (RBS), Atomic Force Microscopy (AFM), and 4-point electrical characterization are used to …

Contributors
Kopas, Cameron J, Newman, Nathan, Singh, Rakesh, et al.
Created Date
2014

Multifunctional oxide thin-films grown on silicon and several oxide substrates have been characterized using High Resolution (Scanning) Transmission Electron Microscopy (HRTEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Electron Energy-Loss Spectroscopy (EELS). Oxide thin films grown on SrTiO3/Si pseudo-substrate showed the presence of amorphised SrTiO3 (STO) at the STO/Si interface. Oxide/oxide interfaces were observed to be atomically clean with very few defects. Al-doped SrTiO3 thin films grown on Si were of high crystalline quality. The Ti/O ratio estimated from EELS line scans revealed that substitution of Ti by Al created associated O vacancies. The strength of the crystal field in STO was …

Contributors
Dhamdhere, Ajit R., SMITH, DAVID J, McCartney, Martha R., et al.
Created Date
2015

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The …

Contributors
Zhu, Chiyu, Nemanich, Robert, Chamberlin, Ralph, et al.
Created Date
2012

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions …

Contributors
Benson, Daryn Eugene, Haussermann, Ulrich, Shumway, John, et al.
Created Date
2013

Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (τf) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by …

Contributors
Zhang, Shengke, Newman, Nathan, Alford, Terry L, et al.
Created Date
2016

Proton and fluorine diffusivity and ionic conductivity of 2-fluoropyridinium triflate (2-FPTf) and proton and fluorine diffusivity, ionic conductivity, and viscosity of trifluoromethanesulfonic acid (TFMSA) monohydrate have been measured over a wide range of temperatures. Diffusivities were measured using the pulsed-gradient spin-echo (PGSE) technique on a 300 MHz NMR spectrometer. Conductivities were measured using electrochemical impedance spectroscopy (EIS) on standard equipment and viscosities were determined using a Cannon-Ubbelohde viscometer. For 2-FPTF, the diffusivity of mobile protons increased from 1.84+/-0.06 x 10(-11) m2/s at 55 degC to 1.64+/-0.05 x 10(-10) m2/s at 115 degC while the diffusivity of 2-fluoropyridine fluorines increased from …

Contributors
Abdullah, Mohammed, Marzke, Robert F, Gervasio, Dominic, et al.
Created Date
2015