Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This dissertation applies the Bayesian approach as a method to improve the estimation efficiency of existing econometric tools. The first chapter suggests the Continuous Choice Bayesian (CCB) estimator which combines the Bayesian approach with the Continuous Choice (CC) estimator suggested by Imai and Keane (2004). Using simulation study, I provide two important findings. First, the CC estimator clearly has better finite sample properties compared to a frequently used Discrete Choice (DC) estimator. Second, the CCB estimator has better estimation efficiency when data size is relatively small and it still retains the advantage of the CC estimator over the DC estimator. ...

Contributors
Choi, Kwang-shin, Ahn, Seung, Mehra, Rajnish, et al.
Created Date
2014