Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2018


Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex …

Contributors
Zhang, Liuxian, Crozier, Peter, Smith, David, et al.
Created Date
2015

In this dissertation, micro-galvanic corrosion effects and passivation behavior of single-phase binary alloys have been studied in order to formulate new insights towards the development of “stainless-like” lightweight alloys. As a lightweight material of interest, Mg-xAl alloys were studied using aqueous free corrosion, atmospheric corrosion, dissolution rate kinetics, and ionic liquid dissolution. Polarization and “accelerated” free corrosion studies in aqueous chloride were used to characterize the corrosion behavior and morphology of alloys. Atmospheric corrosion experiments revealed surface roughness and pH evolution behavior in aqueous environment. Dissolution in absence of water using choline-chloride:urea ionic liquid allowed for a simpler dissolution mechanism …

Contributors
Aiello, Ashlee, Sieradzki, Karl, Buttry, Daniel, et al.
Created Date
2018

Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in …

Contributors
CHEN, XIYING, Sieradzki, Karl, Jiao, Yang, et al.
Created Date
2016

Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS …

Contributors
Miller, Benjamin, Crozier, Peter, Liu, Jingyue, et al.
Created Date
2016

There has been much interest in photoelectrochemical conversion of solar energy in recent years due to its potential for low-–cost, sustainable and renewable production of fuels. Despite the huge potential, there are still a number of technical barriers due to the many constraints needed in order to drive photoelectrochemical reactions such as overall water splitting and the identification of efficient and effective semiconductor materials. To this end, the search for novel semiconductors that can act as light absorbers is still needed. The copper hydroxyphosphate mineral libethenite (CHP), which has a chemical formula of Cu2(OH)PO4, has been recently shown to be …

Contributors
Li, Man, Chan, Candace K, O'Connell, Michael, et al.
Created Date
2013

The electrochemical behavior of nanoscale solids has become an important topic to applications, such as catalysis, sensing, and nano–electronic devices. The electrochemical behavior of elemental metal and alloy particles was studied in this work both theoretically and experimentally. A systematic thermodynamic derivation for the size–dependent Pourbaix Diagram for elemental metal particles is presented. The stability of Pt particles was studied by in situ electrochemical scanning tunneling microscopy (ECSTM). It is shown that small Pt particles dissolve at a lower potential than the corresponding bulk material. For the alloy particles, two size ranges of AuAg particles, ∼4 nm and ∼45 nm …

Contributors
Li, Xiaoqian, Sieradzki, Karl, Crozier, Peter, et al.
Created Date
2012

Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with …

Contributors
Yang, Ting, Chan, Candace K, Crozier, Peter, et al.
Created Date
2017

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to …

Contributors
Diaz Rivas, Rosa Estela, Mahajan, Subhash, Petuskey, William, et al.
Created Date
2010

Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may identify environmentally problematic processes and supply chain components before large investments contribute to technology lock in, and thereby promote integration of environmental concerns into technology development and scale-up (enviro-technical integration). However, application of LCA to nanotechnology is problematic due to limitations in LCA methods (e.g., reliance on data from existing …

Contributors
Wender, Ben A., Seager, Thomas P, Crozier, Peter, et al.
Created Date
2013

Dealloying, the selective electrochemical dissolution of an active component from an alloy, often results in nanoscale bi-continuous solid/void morphologies. These structures are attracting attention for a wide range of applications including catalysis, sensing and actuation. The evolution of these nanoporous structures has been widely studied for the case at low homologous temperature, TH, such as in Ag-Au, Cu-Au, Cu-Pt, etc. Since at low TH the solid-state mobility of the components is of order 10-30 cm2s-1 or less, percolation dissolution is the only mechanism available to support dealloying over technologically relevant time scales. Without the necessity of solid-state mass transport, percolation …

Contributors
Geng, Ke, Sieradzki, Karl, Crozier, Peter, et al.
Created Date
2017