Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications. This dissertation bridges the food industry, material sciences, device fabrication, and biomedical engineering by demonstrating edible supercapacitors and electronic components and devices such as pH sensor. Edible supercapacitors were fabricated using food materials from grocery store. 5 of them were connected in series to power a snake camera. Tests result showed that …

Xu, Wenwen, Jiang, Hanqing, Dai, Lenore, et al.
Created Date

A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation. The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for the assembly of a variety of nanoscale objects. However, certain important fundamental issues at the interface have not been fully explored, especially when the size of the object is comparable with the liquid molecules. In the first MD simulation system, the diffusion and self-assembly of nanoparticles with different size, …

Gao, Wei, Dai, Lenore, Jiao, Yang, et al.
Created Date

Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS) used on the National Aeronautics and Space Administration (NASA) shuttles recovers only 70% of generated wastewater.1 Current osmotic processes show high capability to increase water recovery from wastewater. However, commercial reverse osmosis (RO) membranes rapidly degrade when exposed to pretreated urine-containing wastewater. Also, non-ionic small molecules substances (i.e., urea) are …

Khosravi, Afsaneh Khosravi, Lind, Mary Laura, Dai, Lenore, et al.
Created Date