ASU Electronic Theses and Dissertations
This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.
In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.
Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.
- Dai, Lenore
- 1 Arizona State University
- 1 Phelan, Patrick
- 1 Rykaczewski, Konrad
- 1 Wang, Hao
- 1 Wang, Liping
- 1 Wang, Robert
- 1 English
- 1 Public
- Metafilm
- Nanostructure
- 1 Mechanical engineering
- 1 Metamaterial
- 1 Solar Enengy
- Dwarf Galaxies as Laboratories of Protogalaxy Physics: Canonical Star Formation Laws at Low Metallicity
- Evolutionary Genetics of CORL Proteins
- Social Skills and Executive Functioning in Children with PCDH-19
- Deep Domain Fusion for Adaptive Image Classification
- Software Defined Pulse-Doppler Radar for Over-The-Air Applications: The Joint Radar-Communications Experiment
The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems. A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed …
- Contributors
- Wang, Hao, Wang, Liping, Phelan, Patrick, et al.
- Created Date
- 2016