ASU Electronic Theses and Dissertations

Permanent Link Feedback

In supervised learning, machine learning techniques can be applied to learn a model on a small set of labeled documents which can be used to classify a larger set of unknown documents. Machine learning techniques can be used to analyze a political scenario in a given society. A lot of research has been going on in this field to understand the interactions of various people in the society in response to actions taken by their organizations. This paper talks about understanding the Russian influence on people in Latvia. This is done by building an eeffective model learnt on initial set ...

Contributors
Bollapragada, Lakshmi Gayatri Niharika, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2016

In this thesis multiple approaches are explored to enhance sentiment analysis of tweets. A standard sentiment analysis model with customized features is first trained and tested to establish a baseline. This is compared to an existing topic based mixture model and a new proposed topic based vector model both of which use Latent Dirichlet Allocation (LDA) for topic modeling. The proposed topic based vector model has higher accuracies in terms of averaged F scores than the other two models. Dissertation/Thesis

Contributors
Baskaran, Swetha, Davulcu, Hasan, Sen, Arunabha, et al.
Created Date
2016

With the advent of social media and micro-blogging sites, people have become active in sharing their thoughts, opinions, ideologies and furthermore enforcing them on others. Users have become the source for the production and dissemination of real time information. The content posted by the users can be used to understand them and track their behavior. Using this content of the user, data analysis can be performed to understand their social ideology and affinity towards Radical and Counter-Radical Movements. During the process of expressing their opinions people use hashtags in their messages in Twitter. These hashtags are a rich source of ...

Contributors
Garipalli, Sravan Kumar, Davulcu, Hasan, Shakarian, Paulo, et al.
Created Date
2015

Bangladesh is a secular democracy with almost 90% of its population constituting of Muslims and the rest 10% constituting of the minority groups that includes Hindus, Christians, Buddhists, Ahmadi Muslims, Shia, Sufi, LGBT groups and Atheists. In recent years, Bangladesh has experienced an increase in attacks by religious extremist groups, such as IS and AQIS affiliates, hate-groups and politically motivated violence. Attacks have also become indiscriminate, with assailants targeting a wide variety of individuals, including religious minorities and foreigners. According to the telecoms regulator, the number of internet users in Bangladesh now stands at over 66.8 million reaching 41% penetration. ...

Contributors
Chhabra, Pankaj, Davulcu, Hasan, Li, Baoxin, et al.
Created Date
2017

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, ...

Contributors
Gore, Chinmay Chandrashekhar, Davulcu, Hasan, Hsiao, Ihan, et al.
Created Date
2017

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.