ASU Electronic Theses and Dissertations

Permanent Link Feedback

While discrete emotions like joy, anger, disgust etc. are quite popular, continuous emotion dimensions like arousal and valence are gaining popularity within the research community due to an increase in the availability of datasets annotated with these emotions. Unlike the discrete emotions, continuous emotions allow modeling of subtle and complex affect dimensions but are difficult to predict. Dimension reduction techniques form the core of emotion recognition systems and help create a new feature space that is more helpful in predicting emotions. But these techniques do not necessarily guarantee a better predictive capability as most of them are unsupervised, especially in ...

Contributors
Lade, Prasanth, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2015

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source ...

Contributors
Demakethepalli Venkateswara, Hemanth, Panchanathan, Sethuraman, Li, Baoxin, et al.
Created Date
2017

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, ...

Contributors
Mcdaniel, Troy Lee, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2012

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.