Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2018


Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the ...

Contributors
Nagaraja, Vinjith, Yau, Stephen S, Ahn, Gail-Joon, et al.
Created Date
2015

Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network data analysis. Relational model, on the other hand, enables semantic manipulation of data using relational operators, such as projection, selection, Cartesian-product, and set operators. For many multidimensional data applications, tensor operations as well as relational operations need to be supported throughout the data life cycle. In this thesis, we introduce ...

Contributors
Kim, Mijung, Candan, K. Selcuk, Davulcu, Hasan, et al.
Created Date
2014

A new algebraic system, Test Algebra (TA), is proposed for identifying faults in combinatorial testing for SaaS (Software-as-a-Service) applications. In the context of cloud computing, SaaS is a new software delivery model, in which mission-critical applications are composed, deployed, and executed on cloud platforms. Testing SaaS applications is challenging because new applications need to be tested once they are composed, and prior to their deployment. A composition of components providing services yields a configuration providing a SaaS application. While individual components in the configuration may have been thoroughly tested, faults still arise due to interactions among the components composed, making ...

Contributors
Qi, Guanqiu, Tsai, Wei-Tek, Davulcu, Hasan, et al.
Created Date
2014

The complexity of the systems that software engineers build has continuously grown since the inception of the field. What has not changed is the engineers' mental capacity to operate on about seven distinct pieces of information at a time. The widespread use of UML has led to more abstract software design activities, however the same cannot be said for reverse engineering activities. The introduction of abstraction to reverse engineering will allow the engineer to move farther away from the details of the system, increasing his ability to see the role that domain level concepts play in the system. In this ...

Contributors
Carey, Maurice, Colbourn, Charles, Collofello, James, et al.
Created Date
2013

Measuring node centrality is a critical common denominator behind many important graph mining tasks. While the existing literature offers a wealth of different node centrality measures, it remains a daunting task on how to intervene the node centrality in a desired way. In this thesis, we study the problem of minimizing the centrality of one or more target nodes by edge operation. The heart of the proposed method is an accurate and efficient algorithm to estimate the impact of edge deletion on the spectrum of the underlying network, based on the observation that the edge deletion is essentially a local, ...

Contributors
Peng, Ruiyue, Tong, Hanghang, He, Jingrui, et al.
Created Date
2016

Corporations invest considerable resources to create, preserve and analyze their data; yet while organizations are interested in protecting against unauthorized data transfer, there lacks a comprehensive metric to discriminate what data are at risk of leaking. This thesis motivates the need for a quantitative leakage risk metric, and provides a risk assessment system, called Whispers, for computing it. Using unsupervised machine learning techniques, Whispers uncovers themes in an organization's document corpus, including previously unknown or unclassified data. Then, by correlating the document with its authors, Whispers can identify which data are easier to contain, and conversely which are at risk. ...

Contributors
Wright, Jeremy Lee, Syrotiuk, Violet, Davulcu, Hasan, et al.
Created Date
2014

Source selection is one of the foremost challenges for searching deep-web. For a user query, source selection involves selecting a subset of deep-web sources expected to provide relevant answers to the user query. Existing source selection models employ query-similarity based local measures for assessing source quality. These local measures are necessary but not sufficient as they are agnostic to source trustworthiness and result importance, which, given the autonomous and uncurated nature of deep-web, have become indispensible for searching deep-web. SourceRank provides a global measure for assessing source quality based on source trustworthiness and result importance. SourceRank's effectiveness has been evaluated ...

Contributors
Jha, Manishkumar, Kambhampati, Subbarao, Liu, Huan, et al.
Created Date
2011

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. ...

Contributors
Sun, Xin, Tsai, Wei-Tek, Xue, Guoliang, et al.
Created Date
2016

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can ...

Contributors
Chandakkar, Parag Shridhar, Li, Baoxin, Yang, Yezhou, et al.
Created Date
2017

Visual Question Answering (VQA) is a new research area involving technologies ranging from computer vision, natural language processing, to other sub-fields of artificial intelligence such as knowledge representation. The fundamental task is to take as input one image and one question (in text) related to the given image, and to generate a textual answer to the input question. There are two key research problems in VQA: image understanding and the question answering. My research mainly focuses on developing solutions to support solving these two problems. In image understanding, one important research area is semantic segmentation, which takes images as input ...

Contributors
Tian, Qiongjie, Li, Baoxin, Tong, Hanghang, et al.
Created Date
2017