Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Similarity search in high-dimensional spaces is popular for applications like image processing, time series, and genome data. In higher dimensions, the phenomenon of curse of dimensionality kills the effectiveness of most of the index structures, giving way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity searches. In addition to range searches and k-nearest neighbor searches, there is a need to answer negative queries formed by excluded regions, in high-dimensional data. Though there have been a slew of variants of LSH to improve efficiency, reduce storage, and provide better accuracies, none of the techniques are capable of answering ...

Bhat, Aneesha, Candan, Kasim Selcuk, Davulcu, Hasan, et al.
Created Date

Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method ...

Yang, Tao, Ye, Jieping, Wang, Yalin, et al.
Created Date