Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2011 2018


The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely …

Contributors
Schwerdt, Helen N., Chae, Junseok, Miranda, Félix A, et al.
Created Date
2014

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement …

Contributors
Ding, Liuyang, Adrian, Ronald J, Frakes, David, et al.
Created Date
2018

In this work, we present approximate adders and multipliers to reduce data-path complexity of specialized hardware for various image processing systems. These approximate circuits have a lower area, latency and power consumption compared to their accurate counterparts and produce fairly accurate results. We build upon the work on approximate adders and multipliers presented in [23] and [24]. First, we show how choice of algorithm and parallel adder design can be used to implement 2D Discrete Cosine Transform (DCT) algorithm with good performance but low area. Our implementation of the 2D DCT has comparable PSNR performance with respect to the algorithm …

Contributors
Vasudevan, Madhu, Chakrabarti, Chaitali, Frakes, David, et al.
Created Date
2013

Dynamic susceptibility contrast MRI (DSC-MRI) is a powerful tool used to quantitatively measure parameters related to blood flow and volume in the brain. The technique is known as a “bolus-tracking” method and relies upon very fast scanning to accurately measure the flow of contrast agent into and out of a region of interest. The need for high temporal resolution to measure contrast agent dynamics limits the spatial coverage of perfusion parameter maps which limits the utility of DSC-perfusion studies in pathologies involving the entire brain. Typical clinical DSC-perfusion studies are capable of acquiring 10-15 slices, generally centered on a known …

Contributors
Turley, Dallas, Pipe, James G, Kodibagkar, Vikram, et al.
Created Date
2017

Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta. This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this …

Contributors
Chaudhury, Rafeed Ahmed, Frakes, David, Adrian, Ronald J, et al.
Created Date
2015

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications. In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes. Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems …

Contributors
Yang, Ming, Chakrabarti, Chaitali, Papandreou-Suppappola, Antonia, et al.
Created Date
2015

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires …

Contributors
Wei, Siyuan, Chakrabarti, Chaitali, Frakes, David, et al.
Created Date
2013

Magnetic Resonance Imaging (MRI) is limited in speed and resolution by the inherently low Signal to Noise Ratio (SNR) of the underlying signal. Advances in sampling efficiency are required to support future improvements in scan time and resolution. SNR efficiency is improved by sampling data for a larger proportion of total imaging time. This is challenging as these acquisitions are typically subject to artifacts such as blurring and distortions. The current work proposes a set of tools to help with the creation of different types of SNR efficient scans. An SNR efficient pulse sequence providing diffusion imaging data with full …

Contributors
Aboussouan, Eric, Frakes, David, Pipe, James, et al.
Created Date
2011

The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac flow without the requirement for optical access, as is required with traditional camera-based PIV methods. The fundamentals of ultrasound PIV are introduced, including experimental methods for its …

Contributors
Westerdale, John Curtis, Adrian, Ronald, Belohlavek, Marek, et al.
Created Date
2015

Controlled release formulations for local, in vivo drug delivery are of growing interest to device manufacturers, research scientists, and clinicians; however, most research characterizing controlled release formulations occurs in vitro because the spatial and temporal distribution of drug delivery is difficult to measure in vivo. In this work, in vivo magnetic resonance imaging (MRI) of local drug delivery is performed to visualize and quantify the time resolved distribution of MRI contrast agents. I find it is possible to visualize contrast agent distributions in near real time from local delivery vehicles using MRI. Three dimensional T1 maps are processed to produce …

Contributors
Giers, Morgan Boresi, Caplan, Michael R, Massia, Stephen P, et al.
Created Date
2013