Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, ...

Shen, Wei, Mittlemann, Hans D, Renaut, Rosemary A, et al.
Created Date

Graph coloring is about allocating resources that can be shared except where there are certain pairwise conflicts between recipients. The simplest coloring algorithm that attempts to conserve resources is called first fit. Interval graphs are used in models for scheduling (in computer science and operations research) and in biochemistry for one-dimensional molecules such as genetic material. It is not known precisely how much waste in the worst case is due to the first-fit algorithm for coloring interval graphs. However, after decades of research the range is narrow. Kierstead proved that the performance ratio R is at most 40. Pemmaraju, Raman, ...

Smith, David A., Kierstead, Henry A., Czygrinow, Andrzej, et al.
Created Date