Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small molecule, and the use of microsomes to study the stability of compounds derived to treat mitochondrial diseases. Nicotine addiction is a worldwide epidemic because nicotine is one of the most widely used addictive substances. It is linked to early death, typically in the form of heart or lung disease. A …

Contributors
Schmierer, Margaret Louise, Hecht, Sidney M, Allen, James, et al.
Created Date
2016

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been shown that bleomycin has the ability to selectively target tumor cells over their non-malignant counterparts. Pyrimidoblamic acid, the N-terminal metal ion binding domain of bleomycin is known to be the moiety that is responsible for O2 activation and the subsequent chemistry leading to DNA strand scission and overall antitumor activity. …

Contributors
Bozeman, Trevor, Hecht, Sidney M, Chaput, John, et al.
Created Date
2013

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated …

Contributors
Nangreave, Ryan Christopher, Hecht, Sidney M, Yan, Hao, et al.
Created Date
2013

The manipulation of biological targets using synthetic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that act either as probes for studying protein conformational changes or DNA–protein interaction, or as multifunctional radical quenchers. Fluorescent labeling is of paramount importance to biological studies of proteins. For the development of new extrinsic small fluorophores, a series of tryptophan analogues has been designed and synthesized. Their pdCpA derivatives have been synthesized for tRNA activation and in vitro protein synthesis. The photophysical properties of the tryptophan (Trp) analogues have been examined, …

Contributors
TALUKDER, POULAMI, Hecht, Sidney M, Woodbury, Neal, et al.
Created Date
2016

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome enabled the incorporation of both alpha-D-amino acids and beta-amino acids into full length protein. Described in Chapter 2 are five modified ribosomes having modifications in the peptidyltrasnferase center in the 23S rRNA. These modified ribosomes successfully incorporated five different beta-amino …

Contributors
Maini, Rumit, Hecht, Sidney M, Gould, Ian, et al.
Created Date
2013

Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the cell and causes several serious disorders. Described herein are the synthesis of antioxidant molecules to reduce the effects in an already dysfunctional system. Also described is the study of the mitochondrial electron transport chain to understand the mechanism of action of a library of antioxidants. Illustrated in chapter 1 is …

Contributors
Dey, Sriloy, Hecht, Sidney M, Angell, Charles A, et al.
Created Date
2015

Reactive oxygen species (ROS) are a series of molecules, ions, and radicals derived from oxygen that possess remarkable reactivity. They act as signaling molecules when their concentration in cells is within a normal range. When the levels of ROS increase, reaching a concentration in which the antioxidants cannot readily quench them, oxidative stress will affect the cells. These excessive levels of ROS result in direct or indirect ROS-mediated damage of proteins, nucleic acids, and lipids. Excessive oxidative stress, particularly in chronic inflammation, has been linked with mutations and carcinogenesis. One of the main targets of ROS in severe oxidative stress …

Contributors
Armendariz Guajardo, Jose Israel, Hecht, Sidney M, Moore, Ana, et al.
Created Date
2014