Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2011 2018


Atomic force microscopy (AFM) has become an important tool to characterize and image surfaces with nanoscale resolution. AFM imaging technique has been utilized to study a wide range of substances such as DNA, proteins, cells, silicon surfaces, nanowires etc. Hence AFM has become extremely important in the field of biochemistry, cell biology and material science. Functionalizing the AFM tip made it possible to detect molecules and their interaction using recognition imaging at single molecule level. Also the unbinding force of two molecules can be investigated based on AFM based single molecule force spectroscopy. In the first study, a new chemical …

Contributors
SENAPATI, SUBHADIP, Lindsay, Stuart, Zhang, Peiming, et al.
Created Date
2015

Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in directed material assembly, structural biology, biocatalysis, DNA computing, nano-robotics, disease diagnosis, and drug delivery. This dissertation focuses on developing …

Contributors
Zhang, Fei, Yan, Hao, Liu, Yan, et al.
Created Date
2015

Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus’s ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their …

Contributors
Pahk, Ian J., Gust, Devens, Gould, Ian, et al.
Created Date
2015

Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory or photosynthetic electron transport chain, the rotation of the FO domain drives movements of the central stalk in response to conformational changes in the F1 domain, in which the physical energy is converted into chemical energy through the condensation of ADP and Pi to ATP. The exact mechanism how ATP …

Contributors
Yang, Jay-How, Fromme, Petra, Redding, Kevin, et al.
Created Date
2015

Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the cell and causes several serious disorders. Described herein are the synthesis of antioxidant molecules to reduce the effects in an already dysfunctional system. Also described is the study of the mitochondrial electron transport chain to understand the mechanism of action of a library of antioxidants. Illustrated in chapter 1 is …

Contributors
Dey, Sriloy, Hecht, Sidney M, Angell, Charles A, et al.
Created Date
2015

The growing use of Learning Management Systems (LMS) in classrooms has enabled a great amount of data to be collected about the study behavior of students. Previously, research has been conducted to interpret the collected LMS usage data in order to find the most effective study habits for students. Professors can then use the interpretations to predict which students will perform well and which student will perform poorly in the rest of the course, allowing the professor to better provide assistance to students in need. However, these research attempts have largely analyzed metrics that are specific to certain graphical interfaces, …

Contributors
Beerman, Eric, VanLehn, Kurt, Gould, Ian, et al.
Created Date
2015

The energy required in a eukaryotic cell is provided by mitochondria. Mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation generates ATP. During electron transport, electron leakage from the ETC produces reactive oxygen species (ROS). In healthy cells, there are preventive and defense mechanisms in place to manage ROS. Maintaining a steady balance of ROS is very important because overproduction of ROS can lead to several pathological conditions. There are several strategies to prevent ROS production. Addition of external antioxidants is widely used among them. Discussed in the first part of Chapter 1 is the mitochondrial ETC, ROS production and …

Contributors
Roy Chowdhury, Sandipan, Hecht, Sidney, Gould, Ian, et al.
Created Date
2016

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base. First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a …

Contributors
Xiang, Limin, Tao, Nongjian, Lindsay, Stuart, et al.
Created Date
2016

Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or shape complementarity. It is of great importance to study these kinds of biomolecular interactions to have a detailed knowledge of above mentioned physiological processes. These studies can also open avenues for other aspects of science such as drug development. Discussed in the first part of Chapter 1 are the biotin-streptavidin biomolecular interaction studies by atomic force microscopy (AFM) and surface …

Contributors
Biswas, Sudipta, Lindsay, Stuart, Zhang, Peiming, et al.
Created Date
2016

For reading DNA bases more accurately, a series of nitrogen-containing aromatic heterocycles have been designed and synthesized as candidates of universal reader to interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction and eventually is used to read DNA by recognition tunneling. These recognition molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-mercaptoethyl)-1H-imidazole-2-carboxamide, 5-(2-mercaptoethyl)-4H-1,2,4-traizole-3-carboxamide and 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide. Their formation of hydrogen bonding complexes with nucleobases was studied and association constants were measured by proton NMR titration experiments in deuterated chloroform at room temperature. To do so, the mercaptoethyl chain or thiol group of these reading molecules was replaced or protected with the more lipophilic …

Contributors
Biswas, Sovan, Lindsay, Stuart, Zhang, Peiming, et al.
Created Date
2016