Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the cell and causes several serious disorders. Described herein are the synthesis of antioxidant molecules to reduce the effects in an already dysfunctional system. Also described is the study of the mitochondrial electron transport chain to understand the mechanism of action of a library of antioxidants. Illustrated in chapter 1 is …

Dey, Sriloy, Hecht, Sidney M, Angell, Charles A, et al.
Created Date

A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer the resulting excitation energy to the photosynthetic reaction center (PRC). Small reorganization energy, λ and well-balanced electronic coupling between donors and acceptors in the PRC favor formation of a highly efficient charge-separated (CS) state. By covalently linking electron/energy donors to acceptors, organic molecular dyads and triads that mimic natural photosynthesis …

Arero, Jaro, Gust, Devens, Moore, Ana, et al.
Created Date

Photosynthesis, one of the most important processes in nature, has provided an energy basis for nearly all life on Earth, as well as the fossil fuels we use today to power modern society. This research aims to mimic the photosynthetic process of converting incident solar energy into chemical potential energy in the form of a fuel via systems capable of carrying out photo-induced electron transfer to drive the production of hydrogen from water. Herein is detailed progress in using photo-induced stepwise electron transfer to drive the oxidation of water and reduction of protons to hydrogen. In the design, use of …

Bergkamp, Jesse J, Moore, Ana L, Mariño-Ochoa, Ernesto, et al.
Created Date