ASU Electronic Theses and Dissertations

Permanent Link Feedback

Measuring node centrality is a critical common denominator behind many important graph mining tasks. While the existing literature offers a wealth of different node centrality measures, it remains a daunting task on how to intervene the node centrality in a desired way. In this thesis, we study the problem of minimizing the centrality of one or more target nodes by edge operation. The heart of the proposed method is an accurate and efficient algorithm to estimate the impact of edge deletion on the spectrum of the underlying network, based on the observation that the edge deletion is essentially a local, ...

Contributors
Peng, Ruiyue, Tong, Hanghang, He, Jingrui, et al.
Created Date
2016

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a ...

Contributors
Xiang, Shuo, Ye, Jieping, Mittelmann, Hans D, et al.
Created Date
2014

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based on news content. Next, I proceed to show that information in articles indicated by breaking Tweet volumes leads to a statistically significant boost in the hourly directional prediction accuracies for the DJI stock prices mentioned in these articles. Secondly, I show that using document-level sentiment extraction does not yield a ...

Contributors
Alostad, Hana, Davulcu, Hasan, Corman, Steven, et al.
Created Date
2016

The game held by National Basketball Association (NBA) is the most popular basketball event on earth. Each year, tons of statistical data are generated from this industry. Meanwhile, managing teams, sports media, and scientists are digging deep into the data ocean. Recent research literature is reviewed with respect to whether NBA teams could be analyzed as connected networks. However, it becomes very time-consuming, if not impossible, for human labor to capture every detail of game events on court of large amount. In this study, an alternative method is proposed to parse public resources from NBA related websites to build degenerated ...

Contributors
Zhang, Xiaoyu, Tong, Hanghang, He, Jingrui, et al.
Created Date
2017

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios. This research explores the problem of the why so few of ...

Contributors
Shahapurkar, Som, Liu, Huan, Davulcu, Hasan, et al.
Created Date
2016

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.