Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and …

Contributors
Ansari, Adil, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2019

Owing to the surge in development of endovascular devices such as coils and flow diverter stents, doctors are inclined to approach surgical cases non-invasively more often than before. Treating brain aneurysms as a bulging of a weakened area of a blood vessel is no exception. Therefore, promoting techniques that can help surgeons have a better idea of treatment outcomes are of invaluable importance. In order to investigate the effects of these devices on intra-aneurysmal hemodynamics, the conventional computational fluid dynamics (CFD) approach uses the explicit geometry of the device within an aneurysm and discretizes the fluid domain to solve the …

Contributors
Yadollahi Farsani, Hooman, Herrmann, Marcus, Frakes, David, et al.
Created Date
2018

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface. A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis …

Contributors
Kannan, Karthik, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2014

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded …

Contributors
Kshitij, Abhinav, Dahm, Werner J.A., Herrmann, Marcus, et al.
Created Date
2019

This work helps to explain the drag reduction mechanisms at low and moderate turbulent Reynolds numbers in pipe flows. Through direct numerical simulation, the effects of wall oscillations are observed on the turbulence in both the near wall and the bulk region. Analysis of the average Reynolds Stresses at various phases of the flow is provided along with probability density functions of the fluctuating components of velocity and vorticity. The flow is also visualized to observe, qualitatively, changes in the total and fluctuating field of velocity and vorticity. Linear Stochastic Estimation is used to create a conditional eddy (associated with …

Contributors
Coxe, Daniel, Peet, Yulia, Adrian, Ronald, et al.
Created Date
2019

Over the past three decades, particle image velocimetry (PIV) has been continuously growing to become an informative and robust experimental tool for fluid mechanics research. Compared to the early stage of PIV development, the dynamic range of PIV has been improved by about an order of magnitude (Adrian, 2005; Westerweel et al., 2013). Further improvement requires a breakthrough innovation, which constitutes the main motivation of this dissertation. N-pulse particle image velocimetry-accelerometry (N-pulse PIVA, where N>=3) is a promising technique to this regard. It employs bursts of N pulses to gain advantages in both spatial and temporal resolution. The performance improvement …

Contributors
Ding, Liuyang, Adrian, Ronald J, Frakes, David, et al.
Created Date
2018

A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet …

Contributors
Merrill, Brandon Earl, Peet, Yulia, Herrmann, Marcus, et al.
Created Date
2016

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in …

Contributors
Sakievich, Philip Sakievich, Peet, Yulia, Adrian, Ronald, et al.
Created Date
2017

The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior. A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial …

Contributors
Gandhi, Anurag, Peet, Yulia, Huang, Huei-Ping, et al.
Created Date
2017

Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance in urban areas, CFD simulation is performed on real-life urban geometry and wind velocity profiles are evaluated. Two geometries in Arizona is selected in this thesis to demonstrate the influence of building heights; one of the simulation models, ASU campus, is relatively low rise and without significant tall buildings; the …

Contributors
Ying, Xiaoyan, Huang, Huei-Ping, Peet, Yulia, et al.
Created Date
2015