Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet …

Contributors
Merrill, Brandon Earl, Peet, Yulia, Herrmann, Marcus, et al.
Created Date
2016

The dynamics of a fluid flow inside 2D square and 3D cubic cavities under various configurations were simulated and analyzed using a spectral code I developed. This code was validated against known studies in the 3D lid-driven cavity. It was then used to explore the various dynamical behaviors close to the onset of instability of the steady-state flow, and explain in the process the mechanism underlying an intermittent bursting previously observed. A fairly complete bifurcation picture emerged, using a combination of computational tools such as selective frequency damping, edge-state tracking and subspace restriction. The code was then used to investigate …

Contributors
Wu, Ke, Lopez, Juan, Welfert, Bruno, et al.
Created Date
2019