Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with ...

Contributors
Patani, Nura, Kaliszewski, Steven, Quigg, John, et al.
Created Date
2011

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has ...

Contributors
Morgan, Adam, Kaliszewski, Steven, Quigg, John, et al.
Created Date
2016

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between appropriate categories of higher-rank graphs and the category of C*-algebras, one for Toeplitz algebras and one for Cuntz-Krieger algebras. Additionally, the Cayley graphs of finitely generated groups are used to define a class of k-graphs, and a functor is then given from a category of finitely generated groups to the ...

Contributors
Eikenberry, Keenan, Quigg, John, Kaliszewski, Steven, et al.
Created Date
2016

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that factors into linear factors over $K$, as do all of its derivatives. Such a polynomial is said to be {\it proper} if its roots are distinct. An unresolved question in the literature is whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples are known of proper $K$-derived quartics for a quadratic number field $K$, although other than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field is $\Q(\sqrt{3441})$.) ...

Contributors
Carrillo, Benjamin, Jones, John, Bremner, Andrew, et al.
Created Date
2019