ASU Electronic Theses and Dissertations

Permanent Link Feedback

Date Range
2011 2017

The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments. In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments are explored to obtain fitting parameters for semi-empirical equations. Second, immiscible fluid invasion into porous media is investigated to identify fluid displacement pattern and displacement efficiency that are affected by pore size distribution and connectivity. Finally, fluid flow through granular media is studied to obtain fluid-particle interaction. This study utilizes ...

Contributors
MAHABADI, NARIMAN, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three ...

Contributors
Escobar Melendez, Elsy Alejandrina, Johnson, Paul C., Andino, Jean, et al.
Created Date
2012

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly ...

Contributors
Zheng, Xianglei, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in ...

Contributors
Gutierrez, Angel, Kavazanjian, Edward, Houston, Sandra, et al.
Created Date
2013

Expansive soils impose challenges on the design, maintenance and long-term stability of many engineered infrastructure. These soils are composed of different clay minerals that are susceptible to changes in moisture content. Expansive clay soils wreak havoc due to their volume change property and, in many cases, exhibit extreme swelling and shrinking potentials. Understanding what type of minerals and clays react in the presence of water would allow for a more robust design and a better way to mitigate undesirable soil volume change. The relatively quick and widely used method of X-ray Diffraction (XRD) allows identifying the type of minerals present ...

Contributors
Shafer, Zachery, Zapata, Claudia, Kavazanjian, Edward, et al.
Created Date
2014

Characterization of petroleum spill site source zones directly influences the selection of corrective action plans and frequently affects the success of remediation efforts. For example, simply knowing whether or not nonaqueous phase liquid (NAPL) is present, or if there is chemical storage in less hydraulically accessible regions, will influence corrective action planning. The overarching objective of this study was to assess if macroscopic source zone features can be inferred from dissolved concentration vs. time data. Laboratory-scale physical model studies were conducted for idealized sources; defined as Type-1) NAPL-impacted high permeability zones, Type-2) NAPL-impacted lower permeability zones, and Type-3) dissolved chemical ...

Contributors
Wilson, Sean, Johnson, Paul, Kavazanjian, Edward, et al.
Created Date
2014

ABSTRACT Enzyme-Induced Carbonate Precipitation (EICP) using a plant-derived form of the urease enzyme to induce the precipitation of calcium carbonate (CaCO3) shows promise as a method of stabilizing soil for the mitigation of fugitive dust. Fugitive dust is a significant problem in Arizona, particularly in Maricopa County. Maricopa County is an EPA air quality non-attainment zone, due primarily to fugitive dust, which presents a significant health risk to local residents. Conventional methods for fugitive dust control, including the application of water, are either ineffective in arid climates, very expensive, or limited to short term stabilization. Due to these limitations, engineers ...

Contributors
Knorr, Brian Mark, Kavazanjian, Edward, Houston, Sandra, et al.
Created Date
2014

Hydrocarbon spill site cleanup is challenging when contaminants are present in lower permeability layers. These are difficult to remediate and may result in long-term groundwater impacts. The research goal is to investigate strategies for long-term reduction of contaminant emissions from sources in low permeability layers through partial source treatment at higher/lower permeability interfaces. Conceptually, this provides a clean/reduced concentration zone near the interface, and consequently a reduced concentration gradient and flux from the lower permeability layer. Treatment by in-situ chemical oxidation (ISCO) was evaluated using hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8). H2O2 studies included lab and field-scale distribution studies ...

Contributors
Cavanagh, Bridget, Johnson, Paul C, Westerhoff, Paul, et al.
Created Date
2014

This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based ...

Contributors
Heim, Zackary, Houston, Sandra, Witczak, Matthew, et al.
Created Date
2014

Unsaturated soil mechanics is becoming a part of geotechnical engineering practice, particularly in applications to moisture sensitive soils such as expansive and collapsible soils and in geoenvironmental applications. The soil water characteristic curve, which describes the amount of water in a soil versus soil suction, is perhaps the most important soil property function for application of unsaturated soil mechanics. The soil water characteristic curve has been used extensively for estimating unsaturated soil properties, and a number of fitting equations for development of soil water characteristic curves from laboratory data have been proposed by researchers. Although not always mentioned, the underlying ...

Contributors
Bani Hashem, Elham, Houston, Sandra L, Kavazanjian, Edward, et al.
Created Date
2013

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.