Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Masters Thesis
Date Range
2010 2018


In this work, the development of a novel and a truly in-shoe force measurement system is reported. The device consists of a shoe insole with six thin film piezoresistive sensors and the main circuit board. The piezoresistive sensors are used for the measurement of plantar pressure during daily human activities. The motion sensor mounted on the main circuit board captures kinematic data. In addition, the main circuit board is responsible for the wireless transmission of the data from all the sensors in real-time using BLE protocol. It is housed within the midsole of the shoe, under the medial arch of …

Contributors
Badarinath, Abhishek, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2018

Traditional wireless communication systems operate in duplexed modes i.e. using time division duplexing or frequency division duplexing. These methods can respectively emulate full duplex mode operation or realize full duplex mode operation with decreased spectral efficiency. This thesis presents a novel method of achieving full duplex operation by actively cancelling out the transmitted signal in pseudo-real time. With appropriate hardware, the algorithms and techniques used in this work can be implemented in real time without any knowledge of the channel or any training sequence. Convergence times of down to 1 ms can be achieved which is adequate for the coherence …

Contributors
Avasarala, Sanjay, Kiaei, Sayfe, Kitchen, Jennifer, et al.
Created Date
2016

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based …

Contributors
Kundur, Vinay, Bakkaloglu, Bertan, Ozev, Sule, et al.
Created Date
2013

The research objective is fully differential op-amp with common mode feedback, which are applied in filter, band gap, Analog Digital Converter (ADC) and so on as a fundamental component in analog circuit. Having modeled various defect and analyzed corresponding probability, defect library could be built after reduced defect simulation.Based on the resolution of microscope scan tool, all these defects are categorized into four groups of defects by both function and location, bias circuit defect, first stage amplifier defect, output stage defect and common mode feedback defect, separately. Each fault result is attributed to one of these four region defects.Therefore, analog …

Contributors
Lu, Zhijian, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2014

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to …

Contributors
Jangala Naga, Naveen Sai, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2014

Three-dimensional (3D) inductors with square, hexagonal and octagonal geometries have been designed and simulated in ANSYS HFSS. The inductors have been designed on Silicon substrate with through-hole via with different width, spacing and thickness. Spice modeling has been done in Agilent ADS and comparison has been made with results of custom excel based calculator and HFSS simulation results. Single ended quality factor was measured as 12.97 and differential ended quality factor was measured as 15.96 at a maximum operational frequency of 3.65GHz. The single ended and differential inductance was measured as 2.98nH and 2.88nH respectively at this frequency. Based on …

Contributors
Abbey, Hemanshu, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2012

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. …

Contributors
Luster, Daniel, Ayyanar, Raja, Bakkaloglu, Bertan, et al.
Created Date
2014

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection …

Contributors
Peterson, Cory Jay, Bakkaloglu, Bertan, Barnaby, Hugh, et al.
Created Date
2013

Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for implementing high-throughput DSP systems that are also energy-efficient. Data-path components such as adders and multipliers are evaluated with respect to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR adder with very good EDP performance has been proposed. The corresponding RBR parallel adder has a …

Contributors
Mahadevan, Rupa, Chakrabarti, Chaitali, Kiaei, Sayfe, et al.
Created Date
2011

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF …

Contributors
Sreenivassan, Aiswariya, Ozev, Sule, Kiaei, Sayfe, et al.
Created Date
2011

Mobile electronic devices such as smart phones, netbooks and tablets have seen increasing demand in recent years, and so has the need for efficient, responsive and small power management solutions that are integrated into these devices. Every thing from the battery life to the screen brightness to how warm the device gets depends on the power management solution integrated within the device. Much of the future success of these mobile devices will depend on innovative, reliable and efficient power solutions. Perhaps this is one of the drivers behind the intense research activity seen in the power management field in recent …

Contributors
Hashim, Ahmed, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2013

The photovoltaic systems used to convert solar energy to electricity pose a multitude of design and implementation challenges, including energy conversion efficiency, partial shading effects, and power converter efficiency. Using power converters for Distributed Maximum Power Point Tracking (DMPPT) is a well-known architecture to significantly reduce power loss associated with mismatched panels. Sub-panel-level DMPPT is shown to have up to 14.5% more annual energy yield than panel-level DMPPT, and requires an efficient medium power converter. This research aims at implementing a highly efficient power management system at sub-panel level with focus on system cost and form-factor. Smaller form-factor motivates increased …

Contributors
Krishnan Achary, Kiran Kumar, Kitchen, Jennifer, Kiaei, Sayfe, et al.
Created Date
2015

A Multi-input single inductor dual-output Boost based architecture for Multi-junction PV energy harvesting source is presented. The system works in Discontinuous Conduction Mode to achieve the independent input regulation for multi-junction PV source. A dual-output path is implemented to regulate the output at 3V as well as store the extra energy at light load condition. The dual-loop based sliding-mode MPPT for multi-junction PV is proposed to speed up the system response time for prompt irradiation change as well as maximize MPPT efficiency. The whole system achieves peak efficiency of 83% and MPPT efficiency of 95%. The whole system is designed, …

Contributors
Geng, Yu, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2017

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient …

Contributors
Zhao, Yao, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2014

With the rapid expansion of the photovoltaic industry over the last decade, there has been a huge demand in the PV installations in the residential sector. This thesis focuses on the analysis and implementation of a dc-dc boost converter at photovoltaic sub-module level. The thesis also analyses the various topologies like switched capacitors and extended duty ratio which can be practically implemented in the photovoltaic panels. The results obtained in this work have concentrated on the use of novel strategies to substitute the use of central dc-dc converter used in PV module string connection. The implementation of distributed MPPT at …

Contributors
Sen, Sourav, Ayyanar, Raja, Kiaei, Sayfe, et al.
Created Date
2012

A single solar cell provides close to 0.5 V output at its maximum power point, which is very low for any electronic circuit to operate. To get rid of this problem, traditionally multiple solar cells are connected in series to get higher voltage. The disadvantage of this approach is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT) at single solar cell level is the most efficient way to extract power from solar cell. Power Management IC (MPIC) used to …

Contributors
Singh, Shrikant, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2015

ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses a voltage controlled oscillator (VCO) operating at a fractional multiple of the desired output signal. The proposed topology is different from conventional subharmonic mixing in that the oscillator phase generation circuitry usually required for such a circuit is unnecessary. Analysis and simulations are performed on the proposed mixer circuit in …

Contributors
Martino, Todd Jeffrey, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2010

This thesis presents a power harvesting system combining energy from sub-cells of multi-junction photovoltaic (MJ-PV) cells. A dual-input, inductor time-sharing boost converter in continuous conduction mode (CCM) is proposed. A hysteresis inductor current regulation in designed to reduce cross regulation caused by inductor-sharing in CCM. A modified hill-climbing algorithm is implemented to achieve maximum power point tracking (MPPT). A dual-path architecture is implemented to provide a regulated 1.8V output. A proposed lossless current sensor monitors transient inductor current and a time-based power monitor is proposed to monitor PV power. The PV input provides power of 65mW. Measured results show that …

Contributors
Peng, Qirong, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2017

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as …

Contributors
Khunti, Hitesh, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2013

The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to provide clean supply for low voltage integrated circuits, where point-of-load regulation is important. In System-On-Chip (SoC) applications, digital circuits can change their mode of operation regularly at a very high speed, imposing various load transient conditions for the regulator. These quick changes of load create a glitch in LDO output …

Contributors
Desai, Chirag, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2016