ASU Electronic Theses and Dissertations

Permanent Link Feedback

Date Range
2013 2017

Several state of the art, monitoring and control systems, such as DC motor controllers, power line monitoring and protection systems, instrumentation systems and battery monitors require direct digitization of a high voltage input signals. Analog-to-Digital Converters (ADCs) that can digitize high voltage signals require high linearity and low voltage coefficient capacitors. A built in self-calibration and digital-trim algorithm correcting static mismatches in Capacitive Digital-to-Analog Converter (CDAC) used in Successive Approximation Register Analog to Digital Converters (SARADCs) is proposed. The algorithm uses a dynamic error correction (DEC) capacitor to cancel the static errors occurring in each capacitor of the array as ...

Contributors
Thirunakkarasu, Shankar, Bakkaloglu, Bertan, Garrity, Douglas, et al.
Created Date
2014

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The feedback loop is designed at an operating point and component values are chosen to meet that design requirements. But the capacitors and inductors are subject to variations due to temperature, aging and load stress. Due to these variations, the feedback loop can cross its robustness margins and can lead to degraded performance and potential instability. Another issue in power management ...

Contributors
Malladi, Venkata Naga Koushik, Bakkaloglu, Bertan, Kitchen, Jennifer, et al.
Created Date
2015

Dissertation/Thesis

Contributors
Javidahmadabadi, Mahdi, Kitchen, Jennifer, Bakkaloglu, Bertan, et al.
Created Date
2015

Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog ...

Contributors
Nazari, Ali, Barnaby, Hugh James, Jalali-Farahani, Bahar, et al.
Created Date
2017

Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of complementary metal-oxide-semiconductor (CMOS) circuits. The step-by-step design procedure for the traditional circuit is technology-node independent, can be fully automated, and aims to achieve a minimal area design that meets specified leakage and ESD specifications under all valid process, voltage, and temperature (PVT) conditions. The first novel rail clamp circuit presented ...

Contributors
Venkatasubramanian, Ramachandran, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2016

Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test times, which complicates load-board design, debug, and diagnosis. Second, high frequency operation necessitates the use of expensive equipment, resulting in higher per second test time cost compared with mixed-signal or digital circuits. Moreover, in terms of the non-recurring engineering cost, the need to measure complex specfications complicates the test development ...

Contributors
Nassery, Afsaneh, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2013

Traditional wireless communication systems operate in duplexed modes i.e. using time division duplexing or frequency division duplexing. These methods can respectively emulate full duplex mode operation or realize full duplex mode operation with decreased spectral efficiency. This thesis presents a novel method of achieving full duplex operation by actively cancelling out the transmitted signal in pseudo-real time. With appropriate hardware, the algorithms and techniques used in this work can be implemented in real time without any knowledge of the channel or any training sequence. Convergence times of down to 1 ms can be achieved which is adequate for the coherence ...

Contributors
Avasarala, Sanjay, Kiaei, Sayfe, Kitchen, Jennifer, et al.
Created Date
2016

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited. In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling ...

Contributors
Jankunas, Benjamin, Bakkaloglu, Bertan, Kitchen, Jennifer, et al.
Created Date
2014

Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications and highly sensitive medical instrumentation circuits tend to use low noise regulators as on-chip or on board power supply. Nonlinearities associated with LNA's, mixers and oscillators up-convert low frequency noise with the signal band. Specifically, synthesizer and TCXO phase noise, LNA and mixer noise figure, and adjacent channel power ratios ...

Contributors
Magod Ramakrishna, Raveesh, Bakkaloglu, Bertan, Garrity, Douglas, et al.
Created Date
2014

Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital ...

Contributors
Marti-Arbona, Edgar, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2014

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.