Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has ...

Contributors
Morgan, Adam, Kaliszewski, Steven, Quigg, John, et al.
Created Date
2016

In the 1980's, Gromov and Piatetski-Shapiro introduced a technique called "hybridization'' which allowed them to produce non-arithmetic hyperbolic lattices from two non-commensurable arithmetic lattices. It has been asked whether an analogous hybridization technique exists for complex hyperbolic lattices, because certain geometric obstructions make it unclear how to adapt this technique. This thesis explores one possible construction (originally due to Hunt) in depth and uses it to produce arithmetic lattices, non-arithmetic lattices, and thin subgroups in SU(2,1). Dissertation/Thesis

Contributors
Wells, Joseph, Paupert, Julien, Kotschwar, Brett, et al.
Created Date
2019

Reprising the work of Kolpakov and Martelli, a manifold is constructed by face pairings of a four dimensional polytope, the 24-cell. The resulting geometry is a single cusped hyperbolic 4-manifold of finite volume. A short discussion of its geometry and underlying topology is included. Dissertation/Thesis

Contributors
Abram, Christopher Robert, Paupert, Julien, Kawski, Mattias, et al.
Created Date
2014