Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The objective of this study was to evaluate possible bioremediation strategy for aerobic aquifers by combining ZVI chemical reduction and microbial reductive dechlorination for TCE and ClO4-. To achieve this objective, continuous flow-through soil columns were used to test the hypothesis that bioaugmentation with dechlorinating enrichment cultures downstream of the ZVI injection can lead to complete reduction of TCE and ClO4- in aerobic aquifers. We obtained soil and groundwater from a Superfund site in Arizona. The experiments consisted of 205 cm3 columns packed with soil and ZVI, which fed 1025 cm3 columns packed with soil, biostimulated with fermentable substrates and …

Contributors
Rao, Shefali, Krajmalnik-Brown, Rosa, Delgado, Anca G., et al.
Created Date
2019

On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that metabolize CO (a toxic pollutant) and produce biofuels (H2, ethanol) and commodity chemicals (acetate and other fatty acids). Despite the attempts for commercialization of syngas fermentation by several companies, the metabolic processes involved in CO and syngas metabolism are not well understood. This dissertation aims to contribute to the understanding of …

Contributors
Esquivel Elizondo, Sofia Victoria, Krajmalnik-Brown, Rosa, Rittmann, Bruce E., et al.
Created Date
2017