Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In situ remediation of contaminated aquifers, specifically in situ bioremediation (ISB), has gained popularity over pump-and-treat operations. It represents a more sustainable approach that can also achieve complete mineralization of contaminants in the subsurface. However, the subsurface reality is very complex, characterized by hydrodynamic groundwater movement, geological heterogeneity, and mass-transfer phenomena governing contaminant transport and bioavailability. These phenomena cannot be properly studied using commonly conducted laboratory batch microcosms lacking realistic representation of the processes named above. Instead, relevant processes are better understood by using flow-through systems (sediment columns). However, flow-through column studies are typically conducted without replicates. Due to additional …

Contributors
Mcclellan, Kristin, Halden, Rolf U, Johnson, Paul C, et al.
Created Date
2013

This dissertation explores the use of bench-scale batch microcosms in remedial design of contaminated aquifers, presents an alternative methodology for conducting such treatability studies, and - from technical, economical, and social perspectives - examines real-world application of this new technology. In situ bioremediation (ISB) is an effective remedial approach for many contaminated groundwater sites. However, site-specific variability necessitates the performance of small-scale treatability studies prior to full-scale implementation. The most common methodology is the batch microcosm, whose potential limitations and suitable technical alternatives are explored in this thesis. In a critical literature review, I discuss how continuous-flow conditions stimulate microbial …

Contributors
Kalinowski, Tomasz, Halden, Rolf U, Johnson, Paul C, et al.
Created Date
2013