Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2012 2019


Contamination by chlorinated ethenes is widespread in groundwater aquifers, sediment, and soils worldwide. The overarching objectives of my research were to understand how the bacterial genus Dehalococcoides function optimally to carry out reductive dechlorination of chlorinated ethenes in a mixed microbial community and then apply this knowledge to manage dechlorinating communities in the hydrogen-based membrane biofilm reactor (MBfR). The MBfR is used for the biological reduction of oxidized contaminants in water using hydrogen supplied as the electron donor by diffusion through gas-transfer fibers. First, I characterized a new anaerobic dechlorinating community developed in our laboratory, named DehaloR^2, in terms of …

Contributors
Ziv-El, Michal, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2012

The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. …

Contributors
Tang, Youneng, Rittmann, Bruce E, Westerhoff, Paul, et al.
Created Date
2012

Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I pursue this goal by studying Desulfovibro vuglaris, a representative SRB. For direct involvement, I performed experiments on uranium bioreduction and uraninite (UO2) production in batch tests and in a H2-based membrane biofilm reactor (MBfR) inoculated with D. vuglaris. In summary, D. vuglaris was able to immobilize soluble U(VI) by enzymatically …

Contributors
Zhou, Chen, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2014

Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting electrons extracellularly and then transferring them to an electrode. If MXC technology is to be feasible for ‘real world’ applications, it is essential that diverse ARB are discovered and their unique physiologies elucidated- ones which are capable of consuming a broad spectrum of wastes from different contaminated water sources. This …

Contributors
Lusk, Bradley Gary, Torres, César I, Rittmann, Bruce E, et al.
Created Date
2015

This study reports on benzene and toluene biodegradation under different dissolved oxygen conditions, and the goal of this study is to evaluate and model their removal. Benzene and toluene were tested for obligate anaerobic degradation in batch reactors with sulfate as the electron acceptor. A group of sulfate-reducing bacteria capable of toluene degradation was enriched after 252 days of incubation. Those cultures, originated from anaerobic digester, were able to degrade toluene coupled to sulfate reduction with benzene coexistence, while they were not able to utilize benzene. Methanogens also were present, although their contribution to toluene biodegradation was not defined. Aerobic …

Contributors
Liu, Zhuolin, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to …

Contributors
Nguyen, Binh T., Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

Creating sustainable alternatives to fossil fuel resources is one of the greatest challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional fuels, but must be produced in great quantities in order to meet the demands of growing populations. Cyanobacteria are prokaryotic photosynthetic microorganisms that can produce biomass on large scales using only sunlight, carbon dioxide, water, and small amounts of nutrients. Thus, Cyanobacteria are a viable option for sustainable production …

Contributors
Zevin, Alexander Simon, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance. During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating …

Contributors
Thompson, Matthew John, Rittmann, Bruce E, Fox, Peter, et al.
Created Date
2015

Microbial electrochemical cells (MXCs) serve as an alternative anaerobic technology to anaerobic digestion for efficient energy recovery from high-strength organic wastes such as primary sludge (PS). The overarching goal of my research was to address energy conversion from PS to useful resources (e.g. hydrogen or hydrogen peroxide) through bio- and electro-chemical anaerobic conversion processes in MXCs. First, a new flat-pate microbial electrolysis cell (MEC) was designed with high surface area anodes using carbon fibers, but without creating a large distance between the anode and the cathode (<0.5 cm) to reduce Ohmic overpotential. Through the improved design, operation, and electrochemical characterization, …

Contributors
Ki, Dong Won, Torres, César I, Rittmann, Bruce E, et al.
Created Date
2016

ABSTRACT Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is used to develop microbial biofuel technologies. However, outside of photosynthetic processes, relatively little is known about the biology of microbial phototrophs such as Synechocystis, which impairs their development into market-ready technologies. My research objective was to characterize strategic aspects of Synechocystis biology related to its use in biofuel production; …

Contributors
Allen, Rebecca Custer, Curtiss III, Roy, Krajmalnik-Brown, Rosa, et al.
Created Date
2016