Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional …

Contributors
Hepp, Crystal Marie, Rosenberg, Michael S, Hedrick, Philip, et al.
Created Date
2013

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these …

Contributors
Lee, Hojoon, Johnston, Stephen A, Kumar, Sudhir, et al.
Created Date
2012

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose …

Contributors
Chen, Jianhui, Ye, Jieping, Kumar, Sudhir, et al.
Created Date
2011

Studies of ancient pathogens are moving beyond simple confirmatory analysis of diseased bone; bioarchaeologists and ancient geneticists are posing nuanced questions and utilizing novel methods capable of confronting the debates surrounding pathogen origins and evolution, and the relationships between humans and disease in the past. This dissertation examines two ancient human diseases through molecular and bioarchaeological lines of evidence, relying on techniques in paleogenetics and phylogenetics to detect, isolate, sequence and analyze ancient and modern pathogen DNA within an evolutionary framework. Specifically this research addresses outstanding issues regarding a) the evolution, origin and phylogenetic placement of the pathogen causing skeletal …

Contributors
Harkins, Kelly Marie, Buikstra, Jane E, Stone, Anne C, et al.
Created Date
2014

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I …

Contributors
Yuan, Lei, Ye, Jieping, Wang, Yalin, et al.
Created Date
2013

Proteins are a fundamental unit in biology. Although proteins have been extensively studied, there is still much to investigate. The mechanism by which proteins fold into their native state, how evolution shapes structural dynamics, and the dynamic mechanisms of many diseases are not well understood. In this thesis, protein folding is explored using a multi-scale modeling method including (i) geometric constraint based simulations that efficiently search for native like topologies and (ii) reservoir replica exchange molecular dynamics, which identify the low free energy structures and refines these structures toward the native conformation. A test set of eight proteins and three …

Contributors
Glembo, Tyler, Ozkan, Sefika B, Thorpe, Michael F, et al.
Created Date
2011