ASU Electronic Theses and Dissertations

Permanent Link Feedback

Contributor
Date Range
2017 2017

Compressive sensing theory allows to sense and reconstruct signals/images with lower sampling rate than Nyquist rate. Applications in resource constrained environment stand to benefit from this theory, opening up many possibilities for new applications at the same time. The traditional inference pipeline for computer vision sequence reconstructing the image from compressive measurements. However,the reconstruction process is a computationally expensive step that also provides poor results at high compression rate. There have been several successful attempts to perform inference tasks directly on compressive measurements such as activity recognition. In this thesis, I am interested to tackle a more challenging vision problem ...

Contributors
Huang, Li-chi, Turaga, Pavan, Yang, Yezhou, et al.
Created Date
2017

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.