ASU Electronic Theses and Dissertations

Permanent Link Feedback

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm ...

Contributors
Zhang, Qiang, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2014

In many fields one needs to build predictive models for a set of related machine learning tasks, such as information retrieval, computer vision and biomedical informatics. Traditionally these tasks are treated independently and the inference is done separately for each task, which ignores important connections among the tasks. Multi-task learning aims at simultaneously building models for all tasks in order to improve the generalization performance, leveraging inherent relatedness of these tasks. In this thesis, I firstly propose a clustered multi-task learning (CMTL) formulation, which simultaneously learns task models and performs task clustering. I provide theoretical analysis to establish the equivalence ...

Contributors
Zhou, Jiayu, Ye, Jieping, Mittelmann, Hans, et al.
Created Date
2014

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been ...

Contributors
Singh, Shibani, Wang, Yalin, Li, Baoxin, et al.
Created Date
2017

Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of ...

Contributors
Zhao, Xinlin, Ye, Jieping, Wang, Yalin, et al.
Created Date
2016

Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is still challenging. Usually, foreground object in the video draws more attention from humans, i.e. it is salient. In this thesis we tackle the problem from the aspect of saliency, where saliency means a certain subset of visual information selected by a visual system (human or machine). We present a novel ...

Contributors
Wang, Yilin, Li, Baoxin, Wang, Yalin, et al.
Created Date
2013

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects. Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort ...

Contributors
Chen, Lin, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2016

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing ...

Contributors
Shi, Jie, Wang, Yalin, Caselli, Richard, et al.
Created Date
2016

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.