Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Resource Type
  • Doctoral Dissertation
Date Range
2011 2019


Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and …

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2019

The depth richness of a scene translates into a spatially variable defocus blur in the acquired image. Blurring can mislead computational image understanding; therefore, blur detection can be used for selective image enhancement of blurred regions and the application of image understanding algorithms to sharp regions. This work focuses on blur detection and its application to image enhancement. This work proposes a spatially-varying defocus blur detection based on the quotient of spectral bands; additionally, to avoid the use of computationally intensive algorithms for the segmentation of foreground and background regions, a global threshold defined using weak textured regions on the …

Contributors
Andrade Rodas, Juan Manuel, Spanias, Andreas, Turaga, Pavan, et al.
Created Date
2019

The advent of commercial inexpensive sensors and the advances in information and communication technology (ICT) have brought forth the era of pervasive Quantified-Self. Automatic diet monitoring is one of the most important aspects for Quantified-Self because it is vital for ensuring the well-being of patients suffering from chronic diseases as well as for providing a low cost means for maintaining the health for everyone else. Automatic dietary monitoring consists of: a) Determining the type and amount of food intake, and b) Monitoring eating behavior, i.e., time, frequency, and speed of eating. Although there are some existing techniques towards these ends, …

Contributors
Lee, Junghyo, Gupta, Sandeep K.S., Banerjee, Ayan, et al.
Created Date
2019

Information forensics and security have come a long way in just a few years thanks to the recent advances in biometric recognition. The main challenge remains a proper design of a biometric modality that can be resilient to unconstrained conditions, such as quality distortions. This work presents a solution to face and ear recognition under unconstrained visual variations, with a main focus on recognition in the presence of blur, occlusion and additive noise distortions. First, the dissertation addresses the problem of scene variations in the presence of blur, occlusion and additive noise distortions resulting from capture, processing and transmission. Despite …

Contributors
Mounsef, Jinane, Karam, Lina, Papandreou-Suppapola, Antonia, et al.
Created Date
2018

Deep learning architectures have been widely explored in computer vision and have depicted commendable performance in a variety of applications. A fundamental challenge in training deep networks is the requirement of large amounts of labeled training data. While gathering large quantities of unlabeled data is cheap and easy, annotating the data is an expensive process in terms of time, labor and human expertise. Thus, developing algorithms that minimize the human effort in training deep models is of immense practical importance. Active learning algorithms automatically identify salient and exemplar samples from large amounts of unlabeled data and can augment maximal information …

Contributors
Ranganathan, Hiranmayi, Sethuraman, Panchanathan, Papandreou-Suppappola, Antonia, et al.
Created Date
2018

In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the emergence of novel imagers called spatial-multiplexing cameras, which offer compression at the sensing level itself by providing an arbitrary linear measurements of the scene instead of pixel-based sampling. In this dissertation, I discuss various approaches for effective information extraction from spatial-multiplexing measurements and present the trade-offs between reliability of the …

Contributors
Kulkarni, Kuldeep Sharad, Turaga, Pavan, Li, Baoxin, et al.
Created Date
2017

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic. This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to …

Contributors
Shao, Dangdang, Tao, Nongjian, Li, Baoxin, et al.
Created Date
2016

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: …

Contributors
VENKATARAMAN, VINAY, Turaga, Pavan, Papandreou-Suppappol, Antonia, et al.
Created Date
2016

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration. In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as …

Contributors
Zhu, Tong, Karam, Lina, Li, Baoxin, et al.
Created Date
2016

Blur is an important attribute in the study and modeling of the human visual system. In this work, 3D blur discrimination experiments are conducted to measure the just noticeable additional blur required to differentiate a target blur from the reference blur level. The past studies on blur discrimination have measured the sensitivity of the human visual system to blur using 2D test patterns. In this dissertation, subjective tests are performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. The results of this study indicate that, in the symmetric stereo viewing case, binocular disparity does not affect the blur …

Contributors
Subedar, Mahesh, Karam, Lina, Abousleman, Glen, et al.
Created Date
2015