ASU Electronic Theses and Dissertations

Permanent Link Feedback

Situations of sensory overload are steadily becoming more frequent as the ubiquity of technology approaches reality--particularly with the advent of socio-communicative smartphone applications, and pervasive, high speed wireless networks. Although the ease of accessing information has improved our communication effectiveness and efficiency, our visual and auditory modalities--those modalities that today's computerized devices and displays largely engage--have become overloaded, creating possibilities for distractions, delays and high cognitive load; which in turn can lead to a loss of situational awareness, increasing chances for life threatening situations such as texting while driving. Surprisingly, alternative modalities for information delivery have seen little exploration. Touch, ...

Contributors
Mcdaniel, Troy Lee, Panchanathan, Sethuraman, Davulcu, Hasan, et al.
Created Date
2012

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos. Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) ...

Contributors
Hu, Sheng-Hung, Li, Baoxin, Turaga, Pavan, et al.
Created Date
2016

A lot of strides have been made in enabling technologies to aid individuals with visual impairment live an independent life. The advent of smart devices and participatory web has especially facilitated the possibility of new interactions to aide everyday tasks. Current systems however tend to be complex and require multiple cumbersome devices which invariably come with steep learning curves. Building new cyber-human systems with simple integrated interfaces while keeping in mind the specific requirements of the target users would help alleviate their mundane yet significant daily needs. Navigation is one such significant need that forms an integral part of everyday ...

Contributors
Paladugu, Devi Archana, Li, Baoxin, Hedgpeth, Terri, et al.
Created Date
2016

Light field imaging is limited in its computational processing demands of high sampling for both spatial and angular dimensions. Single-shot light field cameras sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing incoming rays onto a 2D sensor array. While this resolution can be recovered using compressive sensing, these iterative solutions are slow in processing a light field. We present a deep learning approach using a new, two branch network architecture, consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution 4D light field from a single coded 2D image. This network decreases reconstruction time ...

Contributors
Gupta, Mayank, Turaga, Pavan, Yang, Yezhou, et al.
Created Date
2017

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements ...

Contributors
Lohit, Suhas Anand, Turaga, Pavan, Spanias, Andreas, et al.
Created Date
2015

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries.

For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.