Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental …

Contributors
Lu, Yafeng, Maciejewski, Ross, Cooke, Nancy, et al.
Created Date
2017