Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


As the information available to lay users through autonomous data sources continues to increase, mediators become important to ensure that the wealth of information available is tapped effectively. A key challenge that these information mediators need to handle is the varying levels of incompleteness in the underlying databases in terms of missing attribute values. Existing approaches such as Query Processing over Incomplete Autonomous Databases (QPIAD) aim to mine and use Approximate Functional Dependencies (AFDs) to predict and retrieve relevant incomplete tuples. These approaches make independence assumptions about missing values--which critically hobbles their performance when there are tuples containing missing values …

Contributors
Raghunathan, Rohit, Kambhampati, Subbarao, Liu, Huan, et al.
Created Date
2011

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs can generate an immense amount of data - easily reaching terabytes worth of information. Despite increasing the vast amount of data that is currently generated, traditional analytical methods have not increased the overall success rate of identifying active chemical compounds that eventually become novel therapeutic drugs. Moreover, multispectral imaging has …

Contributors
Trevino, Robert, Liu, Huan, Lamkin, Thomas J, et al.
Created Date
2016

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a …

Contributors
Zhao, Jicheng, Baral, Chitta, Kambhampati, Subbarao, et al.
Created Date
2010