Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Machine learning has demonstrated great potential across a wide range of applications such as computer vision, robotics, speech recognition, drug discovery, material science, and physics simulation. Despite its current success, however, there are still two major challenges for machine learning algorithms: limited robustness and generalizability. The robustness of a neural network is defined as the stability of the network output under small input perturbations. It has been shown that neural networks are very sensitive to input perturbations, and the prediction from convolutional neural networks can be totally different for input images that are visually indistinguishable to human eyes. Based on …

Contributors
Yao, Houpu, Ren, Yi, Liu, Yongming, et al.
Created Date
2019