Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2013 2019


In-situ fatigue damage diagnosis and prognosis is a challenging problem for both metallic and composite materials and structures. There are various uncertainties arising from material properties, component geometries, measurement noise, feature extraction techniques, and modeling errors. It is essential to manage and incorporate these uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) prediction. The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis framework for both metallic and composite materials. First, Lamb waves are used as the in-situ damage detection technique to interrogate the damaged structures. Both experimental and numerical …

Contributors
Peng, Tishun, Liu, Yongming, Chattopadhyay, Aditi, et al.
Created Date
2016

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing …

Contributors
Hensberry, Kevin Michael, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2013

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis …

Contributors
Wang, Yuting, Mignolet, Marc P, Jiang, Hanqing, et al.
Created Date
2017

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms in iron, this dissertation aims to investigate several key issues involving HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries (GBs); c) the dislocation-GB interactions and d) the dislocation mobility. The crack tip, which presents …

Contributors
Adlakha, Ilaksh, Solanki, Kiran, Mignolet, Marc, et al.
Created Date
2015

Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their safety and integrity. Testing for the aging pipe strength and toughness estimation without interrupting the transmission and operations thus becomes important. The state-of-the-art techniques tend to focus on the single modality deterministic estimation of pipe strength and do not account for inhomogeneity and uncertainties, many others appear to rely on …

Contributors
Dahire, Sonam, Liu, Yongming, Jiao, Yang, et al.
Created Date
2018

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during …

Contributors
Johnston, Joel Philip, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2016

In this dissertation, the results of our comprehensive computational studies of disordered jammed (i.e., mechanically stable) packings of hard particles are presented, including the family of superdisks in 2D and ellipsoids in 3D Euclidean space. Following a very brief introduction to the hard-particle systems, the event driven molecular dynamics (EDMD) employed to generate the packing ensembles will be discussed. A large number of 2D packing configurations of superdisks are subsequently analyzed, through which a relatively accurate theoretical scheme for packing-fraction prediction based on local particle contact configurations is proposed and validated via additional numerical simulations. Moreover, the studies on binary …

Contributors
Xu, Yaopengxiao, Jiao, Yang, Oswald, Jay, et al.
Created Date
2014

A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure …

Contributors
Venkatesan, Karthik Rajan, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account …

Contributors
Neerukatti, Rajesh Kumar, Chattopadhyay, Aditi, Jiang, Hanqing, et al.
Created Date
2016

The focus of this investigation is on the development of a surrogate model of hypersonic aerodynamic forces on structures to reduce the computational effort involved in the determination of the structural response. The application is more precisely focused on uncertain structures. Then, following an uncertainty management strategy, the surrogate may exhibit an error with respect to Computational Fluid Dynamics (CFD) reference data as long as that error does not significantly affect the uncertainty band of the structural response. Moreover, this error will be treated as an epistemic uncertainty introduced in the model thereby generating an uncertain surrogate. Given this second …

Contributors
Sharma, Pulkit, Mignolet, Marc Paul, Liu, Yongming, et al.
Created Date
2017